

Lecture Notes in Artificial Intelligence 3830
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Danny Weyns H. Van Dyke Parunak
Fabien Michel (Eds.)

Environments for
Multi-Agent Systems II

Second International Workshop, E4MAS 2005
Utrecht, The Netherlands, July 25, 2005
Selected Revised and Invited Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Danny Weyns
Katholieke Universiteit Leuven
Department of Computer Science
AgentWise, DistriNet, 3001 Leuven, Belgium
E-mail: danny.weyns@cs.kuleuven.be

H. Van Dyke Parunak
Altarum Institute
3520 Green Court, Suite 300, Ann Arbor, MI 48105-1579, USA
E-mail: van.parunak@altarum.org

Fabien Michel
Laboratoire d’Etudes et de Recherches Informatiques
Rue des Crayeres, BP 1035, 51687 Reims Cedex 2, France
E-mail: fmichel@leri.univ-reims.fr

Library of Congress Control Number: 2006921545

CR Subject Classification (1998): I.2.11, I.2, C.2.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-32614-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-32614-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11678809 06/3142 5 4 3 2 1 0

Preface

In the past two years the environment in multiagent systems has become increas-
ingly important and is now becoming a focus of research in its own right. Yet,
the environment in multiagent systems has been studied before. So the obvious
question then is: Why does the environment attract the attention of a broader
community of researchers right now?

The answer to this question is manifold. First, current research on environ-
ments is built on the receptive ground of early work. Pioneers such as Demazeau,
Parunak, Ferber, Odell, Omicini and Zambonelli have been stressing the impor-
tance of the environment in multiagent systems for almost a decade.

Second, current research on environments is well organized. The workshop
series on Environments for Multiagent Systems (E4MAS) provides the breeding
ground for coordinating research on environments. E4MAS provides an active
forum for discussion and exchange of ideas. The constructive atmosphere of the
E4MAS workshops and the critical attitude of the attendees stimulate research
in the growing community.

Third, researchers interested in environments come from various backgrounds.
The notion of environment exceeds specific types of agency. The environment is
important for simple ant-like agents as well as for complex cognitive agents. The
environment provides a challenging area for synergetic research on multiagent
systems in general.

And last but not least, the perspective on the role of the environment in
multiagent systems has undergone a fundamental change in the last two years.
Whereas environment and “infrastructure” are traditionally considered equiva-
lent, recent research considers the environment as a first-order design abstraction
in multiagent systems. Several researchers have demonstrated that the environ-
ment provides a building block that can be used creatively in the design of
multiagent system applications. Distinguishing between agent and environment
responsibilities supports separation of concerns in multiagent systems, which is
a prerequisite for good engineering practice.

This volume collects selected and revised papers of the second E4MAS
Workshop, completed with a number of invited papers of prominent researchers
active in the domain. The papers represent the full life-cycle of environment
engineering, including theoretical analysis, models, mechanisms, architecture and
design, and applications. We hope that the work presented in this book stim-
ulates further exploration and exploitation of the environment in multiagent
systems.

December 20, 2005 Danny Weyns
Leuven, Belgium

Organization

E4MAS 2005 was organized in conjunction with the 4th International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2005),
Utrecht, The Netherlands, July 25, 2005.

Program Co-chairs

Danny Weyns K.U. Leuven, Belgium
H. Van Dyke Parunak Altarum Institute, Ann Arbor, USA
Fabien Michel Laboratoire d’Etudes et de Recherches Infor-

matiques Reims, France

Program Committee

Sven Brueckner Altarum Institute, Ann Arbor, USA
Yves Demazeau Laboratoire Leibniz, IMAG, Grenoble, France
Marco Dorigo Université Libre de Bruxelles
Alexis Drogoul Laboratoire d’Informatique de Paris 6, France
Jacques Ferber Université de Montpellier II, Lirmm, France
Alexander Helleboogh DistriNet, K.U. Leuven, Belgium
Tom Holvoet DistriNet, K.U. Leuven, Belgium
Franziska Klügl University of Wurzburg, Germany
Marco Mamei University of Modena and Reggio Emilia, Italy
Fabien Michel Laboratoire d’Etudes et de Recherches Infor-

matiques Reims, France
James Odell James Odell Associates, Ann Arbor, USA
Andrea Omicini Università di Bologna, Italy
H. Van Dyke Parunak Altarum Instutute, Ann Arbor, USA
Karl Tuyls Universiteit Maastricht, The Netherlands
Paul Valckenaers PMA, K.U. Leuven, Belgium
Franco Zambonelli University of Modena and Reggio Emilia, Italy

Website

http://www.cs.kuleuven.ac.be/∼distrinet/events/e4mas/

Acknowledgements

We are grateful to the PC members for their critical review work. We also thank
Elke Steegmans, Alexander Helleboogh, Kurt Schelfthout, Tom De Wolf, Koen
Mertens, Nelis Boucké and Tom Holvoet for their efforts for E4MAS. A special
word of thanks to Tom De Wolf for managing the website.

Table of Contents

Models, Architecture, and Design

Environments for Situated Multi-agent Systems: Beyond Infrastructure
Danny Weyns, Giuseppe Vizzari, Tom Holvoet . 1

Holonic Modeling of Environments for Situated Multi-agent Systems
Sebastian Rodriguez, Vincent Hilaire, Abder Koukam 18

An Environment-Based Methodology to Design Reactive Multi-agent
Systems for Problem Solving

Olivier Simonin, Franck Gechter . 32

An Architecture for MAS Simulation Environments
Renee Steiner, Gary Leask, Rym Z. Mili . 50

Mediated Coordination

Indirect Interaction in Environments for Multi-agent Systems
David Keil, Dina Goldin . 68

The Governing Environment
Michael Schumacher, Sascha Ossowski . 88

Enriching a MAS Environment with Institutional Services
Andreia Malucelli, Henrique Lopes Cardoso, Eugénio Oliveira 105

Overhearing and Direct Interactions: Point of View of an Active
Environment

Eric Platon, Nicolas Sabouret, Shinichi Honiden 121

Grounding Social Interactions in the Environment
Florian Klein, Holger Giese . 139

A Survey of Environments and Mechanisms for Human-Human
Stigmergy

H. Van Dyke Parunak . 163

Augmenting the Physical Environment Through Embedded Wireless
Technologies

Marco Mamei, Franco Zambonelli . 187

VIII Table of Contents

The Environment: An Essential Abstraction for Managing Complexity
in MAS-Based Manufacturing Control

Paul Valckenaers, Tom Holvoet . 205

Applications

Exploiting a Virtual Environment in a Real-World Application
Danny Weyns, Kurt Schelfthout, Tom Holvoet . 218

Web Sites as Agents’ Environments: General Framework and
Applications

Stefania Bandini, Sara Manzoni, Giuseppe Vizzari 235

Environment Organization of Roles Using Polymorphism
Derek Messie, Jae C. Oh . 251

Testing AGVs in Dynamic Warehouse Environments
Alexander Helleboogh, Tom Holvoet, Yolande Berbers 270

Author Index . 291

Environments for Situated Multi-agent Systems:
Beyond Infrastructure

Danny Weyns1, Giuseppe Vizzari2, and Tom Holvoet1

1 AgentWise, DistriNet, Katholieke Universiteit Leuven, Belgium
{danny.weyns, tom.holvoet}@cs.kuleuven.be

2 DISCo, Università degli Studi di Milano–Bicocca, Italy
vizzari@disco.unimib.it

Abstract. There is a lot of confusion on what the environment of a multi-agent
system (MAS) comprises. Sometimes, researchers refer to the environment as the
logical entity of a MAS in which the agents and other resources are embedded.
Sometimes, the notion of environment is used to refer to the software infrastruc-
ture on which the MAS is executed. Sometimes, environment even refers to the
underlying hardware infrastructure on which the MAS runs.

Our research focuses on situated MASs, i.e. MASs in which agents have an
explicit position in the environment. In this paper, we propose a three-layer model
for situated MASs that considers agents as well as the environment as first-order
abstractions. The aim of this model is to clarify the confusion between the concept
of the environment and the infrastructure on which the MAS is deployed. The top
layer of the model consists of the MAS application logic, the middle layer con-
tains the software execution platform, and the physical infrastructure is located in
the bottom layer. Starting from this model, we propose a classification of situated
MASs based on the physical infrastructure of the MAS. We illustrate the differ-
ent classes with examples from the research community and our own practice.
We apply the three-layer model to each example. The models show that agents
and the environment are abstractions that crosscut the three layers of the model.

1 Introduction

Despite most multi-agent system (MAS) definitions include the term environment (see,
e.g., [1, 2]), in general, the environment is not considered as an independent building
block in MASs. Typically, the environment is conceived as communication infrastruc-
ture, implementing a specific message transfer infrastructure and mechanisms for the
management of agent discovery and acquaintance. Sometimes, the notion of environ-
ment is used to refer to the software infrastructure on which the MAS is executed.
Sometimes, environment even refers to the underlying hardware infrastructure on which
the MAS runs. Generally, the environment is only considered as infrastructure and not
as a relevant entity at the application level. At the application level, however, several
aspects of MASs that conceptually do not belong to the agents themselves should not
be assigned to, or hosted inside agents. Examples are the topology of a spatial domain,
specification and access management of domain specific resources, or support for in-
direct coordination. These (and other) aspects should be dealt with explicitly and the

D. Weyns, H. Van Dyke Parunak, and F. Michel (Eds.): E4MAS 2005, LNAI 3830, pp. 1–17, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 D. Weyns, G. Vizzari, and T. Holvoet

environment is the natural candidate to encapsulate these aspects. In practice however,
such aspects are typically integrated implicitly in MASs, or implemented in an ad-hoc
manner. This indicates that in general, the MAS research community fails to treat the
environment as a first-order abstraction, i.e. the environment is not considered as an
independent building block that encapsulates its own, clearly defined responsibilities
within the MAS, irrespective of the agents [3].

The importance of the environment as a first-order abstraction is particularly ap-
parent for situated MASs. Situated MASs are characterized by the presence of an ex-
plicit spatial structure in which agents are placed. Generally, situated MASs are also
characterized by specific perception and interaction mechanisms based on contextual
properties, such as agents’ relative positions. Situated MASs typically provide a means
for indirect coordination, e.g., with digital pheromones [4] or gradient fields [5]. The
domain specific stipulation of environmental markers, the management of the coordi-
nation infrastructure, and the actual implementation of these mechanisms should not be
delegated to agents, but are instead typical responsibilities of the environment.

In this paper, we introduce a three-layer model for situated MASs that considers
agents as well as the environment as first-order abstractions. The main goal of this
model is to analyze relationships among agents, the environment, and the MAS deploy-
ment infrastructure, aiming to bring clarity in the confusion between the concept of the
environment and MAS infrastructure.

This paper is structured as follows. Section 2 discusses a three-layer model for situ-
ated MASs that considers agents and the environment as first-order abstractions. We
use this model to propose a classification of situated MASs based on the physical
infrastructure the MAS is built upon. Section 3 illustrates the different classes with
practical examples. Finally, in Sect. 4 we draw conclusions.

2 A Three-Layer Model for Situated MASs

The term environment is generally included in most agent and MAS definitions, but
there is much confusion on relationships between the concept of environment and the
deployment infrastructure of a MAS. In this section, we describe a three-layer model
for situated MAS that aims to bring clarity in this confusion. Starting from this model
we then propose a classification of situated MASs based on the physical infrastruc-
ture on which the MAS is deployed. We conclude with a discussion of related work.
In the next section we apply the three-layer model to three applications that belong to
different classes.

2.1 Three-Layer Model

The proposed model is a standard deployment model for distributed applications (see,
e.g., [6]) applied to situated MAS-based applications. The model for situated MAS is
depicted in Fig. 1.

The model is made up of the following three layers:

• The multiagent system (MAS) application layer at the top (i.e., the application logic
and the MAS framework);

Environments for Situated MAS: Beyond Infrastructure 3

Fig. 1. Three-layer model for situated MASs

• The execution platform layer (i.e., middleware infrastructure and the operating
system);

• The physical infrastructure layer at the bottom (i.e., processors, network infrastruc-
ture, etc.).

Below we elaborate on each layer and illustrate that the abstraction of the envi-
ronment as well as the agents, crosscut the three layers in the model. Before that, we
introduce a simple file searching system in a peer-to-peer (P2P) network [7] that we use
as a running example to illustrate the different layers of the three-layer model. The idea
of this application is to let mobile agents act on behalf of users and browse a shared
distributed file system to find requested files. Each user is situated in a particular node
(its base). Users can offer files at their base and can send out agents to find files for

4 D. Weyns, G. Vizzari, and T. Holvoet

them. Agents can observe the environment, however, to avoid network overload, agents
can perceive the environment only to a limited extend, e.g. 2 hops from the agent’s
current position. An agent can perceive nodes and connecting links, bases on nodes,
and files available on nodes. Agents can also sense signals. Each base emits such a
signal. The intensity of the signal decreases with every hop. Sensing the signal of its
base enables an agent to “climb up” the gradient, i.e. move towards its base or alter-
natively “climb down”, i.e. move away from it. Finally, agents can sense pheromones.
An agent can drop a file-specific pheromone in the environment when it returns back
to its base with a copy of a file. Such a pheromone trail can not only help the agent
later on when it needs a new copy of the file, it can also help other agents to find their
way to that file. Pheromones evaporate, thereby limiting their influence over time. This
is an important property to avoid that agents are misled when a file disappears from a
certain node.

We now zoom in on each layer of the three-layer model.

Multiagent System Application Layer. The MAS Application layer consists of two
sub-layers:

• The Application Specific Logic layer, which comprises the Application Agents and
the Application Environment of the MAS, which represent the solution for the spe-
cific problem context. The Application Agents are the autonomous entities in the
MAS, the Application Environment provides an application specific representation
of the domain to Application Agents. The Application Environment enables Appli-
cation Agents to interact with domain resources and with other Application Agents.
The Application Environment offers a domain specific abstraction to Application
Agents, hiding the complexity of resource access, interaction handling and consis-
tency management. The Application Agents in the P2P file searching system are the
logical entities that are created by the users to search for files in the network. The
Application Environment is the logical entity that represents the space in which the
Application Agents perform their job. The Application Environment offers a repre-
sentation to the Application Agents of the neighboring nodes and connecting links
of the network. The Application Environment also represents the available files, the
gradient fields emitted by the bases, and the file-specific pheromones dropped by
the agents.

• The MAS Framework layer: the Application Specific Logic is typically deployed
on top of a MAS Framework. The latter supplies predefined MAS abstractions,
such as a particular engine for agent’s decision making, support for communica-
tion, a model for action, etc. These abstractions can be reused over different appli-
cations. In the P2P file searching system, the MAS framework layer likely provides
a pheromone infrastructure and infrastructure for gradient fields. Another example
is support for mobility of the agents.

Execution Platform. The Execution Platform is in turn subdivided in two sublayers:

• A middleware layer which serves as the glue between (distributed) components. It
provides support for remote procedure calls, threading, transactions, persistence,

Environments for Situated MAS: Beyond Infrastructure 5

load balancing, generative communication, etc. In general, middleware offers a
software platform on which distributed applications can be executed. An example
of middleware support in the P2P file searching system is a distributed tuple-space
infrastructure that provides a basic substrate for the pheromone and gradient field
infrastructure.

• An Operating System layer that enables the execution of the application on the
physical hardware and it offers basic functionality to applications, hiding low-level
details of the underlying physical platform. The Operating System manages mem-
ory usage and offers transparent access to lower level resources such as files, it
provides network facilities, it handles the intervention of the users, it provides ba-
sic support for timing, etc. The operating system provides many basic functions,
one example is the file system.

Physical Infrastructure. The Execution Platform runs on top of the Physical Infras-
tructure, which can is generally divided in two parts:

• The Computer Hardware, which contains the Hosts with processors and the
connecting Network Infrastructure. In the P2P file sharing system, the physical
infrastructure consists of a computer machine on each node and a connecting
network. Each machine is a possible access point to the system for a user.

• The Physical World, which refers to the physical parts of the MAS, if present in the
application. In the P2P file sharing system this aspect is not relevant, and thus this
layer is empty.

Agent and Environment Crosscutting Abstractions. Situated MAS applications typ-
ically comprise all three layers, although some sub-layers may be empty, e.g. when the
MAS application is built from scratch, the MAS Framework layer is empty. Agents and
the environment span the three layers of the three-layer model, this is graphically de-
picted in Fig. 1 with the dashed vertical rectangles. An agent, first of all, is composed
of an application specific part, i.e. the Application Agent located in the MAS Applica-
tion layer. The realization of this Application Agent may be based on a generic MAS
Framework that, in turn, exploit an underlying Middleware and the Operating System
services. Finally, the agent software is hosted and executes on a physical system that
is part of the Physical Infrastructure layer. Analogously, the environment consists of an
application specific part that corresponds to the Application Environment, located in
the MAS Application layer. The Application Environment is typically built on top of a
MAS Framework that is supported by generic Middleware and Operating System ser-
vices. As for the agents, the environment software executes on a physical system, that
includes Hosts provided with processors and an interconnecting Network Infrastructure.

The proposed three-layer model promotes the environment to a first-order abstrac-
tion, on the same level as the agents. Considering the environment as a first-order ab-
straction urges researchers to deal with responsibilities of the environment explicitly,
and also promotes the modelling, design and implementation of concepts like percep-
tion, action handling, and locality in comprehensive ways. In particular, it must be
noted that one of the responsibilities of the environment is to provide situated agents
with proper perceptions, which may include information of the physical world obtained

6 D. Weyns, G. Vizzari, and T. Holvoet

Fig. 2. A classification of situated MASs based on the physical infrastructure

through sensors. On the other hand, agents’ actions may have effects which extend over
the software environment and may cause modification on the physical world via actua-
tors. The three-layer model also stresses the need to consider the “vertical” relationships
among different layers.

2.2 Classification of Situated MASs

Starting from the three-layer model, we now present a classification of situated MASs
based on the physical infrastructure on which the MAS is deployed, see Fig. 2. The
goal of this classification is to further clarify the relationship between the agent and
environment abstractions and the MAS infrastructure. The structural aspects of the en-
vironment are particularly relevant for situated MASs, as agents are deeply influenced
by their position, which generally determines their perceptions and (inter)actions.

The physical MAS infrastructure can be centralized (Centralized Infrastructure), i.e.,
deployed on a single computer, or distributed, i.e., deployed on a set of computers that
are connected through a computer network (Distributed Infrastructure). Distribution
can be a constraint of the application, or a well-considered architectural decision. In
a centralized MAS infrastructure, the environment is an encapsulated software entity
deployed on a single computer. In a distributed MAS infrastructure, the distributed
environment is a logical entity that physically consists of a set of software entities de-
ployed on different nodes that are connected through a network. In a centralized setting,
agents experience the environment as one shared entity that is locally accessible. In a
distributed setting, agents can be aware of distribution or distribution may be trans-
parent to agents. Distribution of an environment is supported by generic middleware
infrastructure.

Besides the distinction between centralization or distribution, we further distinguish
between the dynamics of the distributed infrastructure. The distributed infrastructure of
a MAS can be static or change dynamically. In a static infrastructure, the number of
computers and the layout of the connecting network does not change over time (Fixed
Infrastructure). A topology of a dynamic infrastructure changes over time due to newly

Environments for Situated MAS: Beyond Infrastructure 7

added nodes or nodes that disappear (Dynamic Infrastructure). In other cases, the envi-
ronment is not based on a predefined notion of adjacency, but generates ad-hoc spatial
relationships reflecting for instance the positions of physical agents in an actual envi-
ronment (Ad-hoc).

The complexity related to the design and implementation of hardware/software in-
frastructures related to agents and the environment grows in distributed scenarios, espe-
cially in cases that do not provide a fixed predefined infrastructure for the arrangement
of agents and the environment.

2.3 Related Work

To our best knowledge, no deployment models for MASs were previously proposed
that explicitly discusses the position of agents and the environment. However, several
layered models for MAS infrastructure are discussed in literature. Here we look at three
representative examples: Retsina, Jade and TOTA.

Retsina (Reusable Environment for Task-Structured Intelligent Network Agents) is
a well-known MAS infrastructure [8]. Retsina is an open MAS infrastructure that sup-
ports communities of heterogeneous agents. The Retsina MAS infrastructure is built
up in several layers. The bottom layer contains the operating environment that pro-
vides the platform on which the infrastructure components and the agents run. Retsina
supports a broad range of execution platforms and it automatically handles different
types of network transport layers. The operating environment corresponds to the Phys-
ical Infrastructure layer in the three-layer model presented in this paper. On top of the
operating environment, Retsina defines eight different layers. The communication in-
frastructure layer provides communication channels for message transfer between peers,
and multicast that is used for a discovery process to let the agents find infrastructural
components. The ACL infrastructure layer provides an ontology and a protocol en-
gine with a protocol language. The MAS management services layer offers tool sup-
port to monitor the activity of the agents and to launch the applications. The security
layer supports agent authentication, secure communication and integrity of the Retsina
infrastructure components. The ANS (Agent Name Services) layer provides a means
to abstract away from physical locations by mapping agent identifiers to network ad-
dresses. The Matchmakers layer provides a mapping between agents and services. Ser-
vice providers can advertise their services at the matchmakers and agents can request
the matchmakers to get contact information of relevant providers. Finally, the Retsina-
OAA InterOperator on top of the Retsina MAS infrastructure bridges the Retsina MAS
infrastructure with the OOA platform (Open Agent Architecture). These eight layers
provide middleware and MAS specific services that conceptually belongs to the Mid-
dleware layer and the MAS Framework layer in the three-layer model presented in this
paper.

Jade (Java Agent Development Environment) [9] is a pure Java, middleware platform
intended for the development of distributed multiagent applications based on peer-to-
peer communication. Jade includes Java classes to support the development of applica-
tion agents and the “run-time environment” that provides the basic services for agents
to execute. An instance of the Jade run-time is called a container, and the set of all
containers is called the platform. The platform provides a middleware layer that hides

8 D. Weyns, G. Vizzari, and T. Holvoet

from agents the complexity of the underlying execution system. Jade includes a naming
service ensuring that each agent has a unique name, and a yellow pages service that can
be distributed across multiple hosts. Agents can dynamically discover each other and
communicate by exchanging asynchronous messages. Jade provides a set of skeletons
of typical interaction protocols. The Jade platform also supports mobility of code, en-
abling agents to stop running on a host, migrate to a different remote host and restart
execution from the point they stopped. The Jade middleware layer corresponds to the
MAS Framework layer in the three-layer model presented in this paper. The Jade layer
executes on top of a Java Virtual Machine layer that provides generic middleware sup-
port for Web services, distributed communication, threading, transaction management,
security, etc.

In [10], Mamei and Zambonelli introduce the notion of “spatial computing stack”
and apply it to the TOTA (Tuples On The Air) middleware. The spatial computing stack
defines a framework for spatial computing mechanisms at four levels: the physical level
at the bottom, the structure level above it, then follows the navigation level, and finally
the application level at the top. The “physical level” deals with how components find
each other and start communication with each other. In the case of TOTA, a node de-
tects in-range nodes via one-hop message broadcast. The “structure level” is the level at
which a spatial structure is built and maintained by components in the physical network.
In TOTA, a tuple can be injected from a node. A TOTA tuple is defined in terms of a
content and a propagation rule. The content represents the information carried on by the
tuple and the propagation rule determines how the tuple should be propagated across the
network. Once a tuple is injected it propagates and creates a centered spatial structure
in the network representing some spatial feature relative to the source. At the “naviga-
tion level” components exploit basic mechanisms to orient their activities in the spatial
structure and to sense and affect the local properties of space. TOTA defines an API to
allow application components to sense TOTA tuples in their one-hop neighborhood and
to locally perceive the space defined by them. Navigation in the space consists of agents
acting on the basis of the local shape of specific tuples. At the “application level”, nav-
igation mechanisms are exploited by application components to interact and organize
their activities. TOTA enables complex coordination tasks in a robust and flexible way.
An example is a group of agents that coordinate their respective movements by fol-
lowing locally perceived tuples downhill or uphill resulting in specific formations. The
spatial computing stack model extends over the three layers of the model presented in
this paper. The physical level is situated in the Physical infrastructure, the structure and
navigation level are situated in the Middleware layer, and the application level finally is
situated in the MAS Application layer.

3 Applying the Three-Layer Model for Situated MASs

In this section, we apply the three-layer model for situated MASs to three MAS ap-
plications with different physical infrastructures. First we look at a multiagent-based
simulation application that is deployed on a centralized infrastructure. Then we look at
a MAS-based control system that is deployed on an ad-hoc infrastructure. Finally, we
zoom in on a mobile MAS application that is deployed on a dynamic infrastructure.

Environments for Situated MAS: Beyond Infrastructure 9

3.1 MMASS-Based Crowd Simulation

In this section, we discuss an application that simulates a crowd adopting a situated
MAS [11] approach. In particular, the application supports the modelling and study of
crowds and pedestrian behaviour in large rooms, e.g., lecture halls. According to the
classification proposed in Sect. 2.2, this application is classified as centralized infras-
tructure. The goal of the simulation is to support architects and designers of large rooms
in their decision making activities, for instance to determine the number and positions
of emergency exits. Given a design and specific starting conditions, the architect can
then obtain an indication of the behaviour of a crowd, for example in an evacuation
situation.

There are several approaches to this problem which adopt a Cellular Automata (CA)
based model (see, e.g., [12]), but they generally relax the basic CA model and allow
action–at–a–distance. Moreover these approaches typically model only homogeneous
behaviour of the simulated entities by means of cell states and transition rules that also
include the local state of the environment and the laws that regulate its dynamics. In
this way, the environment and the embedded entities are mixed up, causing large cell
states and very complex transition rules. The MAS approach instead provides a clean
separation between the environment and the entities which inhabit it, and also allows to
model heterogeneity of agents in a more convenient way.

For the application, the Multilayered Multi Agent Situated System (MMASS) [13]
model was adopted to support the design and development of the crowd simulation
application. MMASS provides an explicit spatial representation of the environment
and an interaction model strongly related to the agents’ context. In MMASS, agents
can (1) interact through a reaction with adjacent entities, (2) emit fields that are dif-
fused in the environment, and (3) can be perceived by other agents. Fig. 3 depicts
the three-layer model for situated MASs, applied to the MMASS simulation
application.

MAS Application Layer. The crowd simulation system is composed of a set of Pedes-
trian Agents situated in a Lecture Hall (i.e. a virtual environment that represents a bidi-
mensional abstraction of a physical space). Pedestrians (and other relevant elements
of the environment) generate fields that can be perceived by pedestrians according to
specific diffusion and perception mechanisms. The perception of these fields, and their
local state, influences pedestrian behaviors. In critical situations, the pedestrians can use
the perceived fields to move towards emergency exits.

All the application specific elements are built on top of the MMASS Framework.
The MMASS Framework offers a set of basic components for applications that use
the MMASS model. In particular the framework supports: the definition of the spatial
structure of the environment by means of basic elements (i.e. nodes and edges); in-
teraction among agents by means of field based mechanisms and though the reaction
among adjacent agents; and support the definition of domain specific agents through
agent templates, which define the fundamental elements common to all MMASS
agents.

Execution Platform. The MMASS framework, that is based on Java technology, ex-
ploits some basic library for XML file access for configuration matters. Facultatively,

10 D. Weyns, G. Vizzari, and T. Holvoet

Fig. 3. The three-layer model for the MMASS based simulation case

the simulator is able to generate a 3D visualization by means of 3D Studio Max, a
commercial 3D modelling and visualization tool 1. For reasons of performance, the ap-
plication can be distributed, however, in this specific case, a centralized approach is
used, so there is no need for supporting middleware.

The crowd simulation runs on the Windows XP operating system.

Physical Infrastructure. The physical infrastructure of the application consists of a
single PC provided with a Pentium IV processor.

3.2 Automated Guided Vehicles Coordination

In this section, we apply the three-layer model to a real-world application that uses
a situated MAS to the control of an automatic guided vehicle (AGV) transportation
system [14]. This application is classified as ad-hoc infrastructure in the classification

1 http://www4.discreet.com/3dsmax/

Environments for Situated MAS: Beyond Infrastructure 11

proposed in Sect. 2.2. The application is developed in the context of a R&D project
between the AgentWise research group and Egemin2, a manufacturer of industrial auto-
mated logistic service systems. Traditionally, AGV transportation systems use a central
server that controls the system. Although efficient, the centralized architecture lacks
flexibility. In the project we investigate the feasibility of a decentralized architecture
aiming to improve flexibility.

An AGV transportation system uses unmanned vehicles to transport loads through
a warehouse. Typical applications are repackaging and distributing incoming goods to
various branches, or distributing manufactured products to storage locations. AGVs can
move through a warehouse, guided by a laser navigation system or by magnets or cables
that are fixed in the floor. AGVs are provided with a battery as energy source.

The main functionalities of an AGV transportation system are: (1) perform
transports: transports are generated by client systems (warehouse management system,
operator, etc.) and have to be assigned to AGVs that can execute them; (2) collision
avoidance and deadlock prevention; (3) when an AGV is idle it has to park at a free
park location; (4) when an AGV runs out of energy, it has to charge its battery at one
of the charging stations. The low-level control of the AGVs in terms of sensors and
actuators (staying on track on a segment, turning, and determining the current position,
etc.), is handled by the low-level AGV control software called E’nsor3.

Fig. 4 depicts the three-layer model for the AGV transportation system.

MAS Application Layer. The situated MAS consists of an environment and two kinds
of agents, Transport Agents and AGV Agents. Transport Agents are located at transport
bases, a transport base may host one or more Transport Agents. A transport base is a
computer system that is in charge to manage the transports of a particular area in the
warehouse. Together, the transport bases, connected through a wired network, cover the
whole layout of the warehouse. AGV Agents are located on mobile AGV machines that
are situated on the factory floor. With each AGV there is one AGV Agent associated.

Transport bases receive transport requests from client systems, i.e. typically a ware-
house management system, but it can also be another logistic machine or even an opera-
tor. For each new transport request, a new Transport Agent is created that is responsible
to assign the transport to an AGV and to ensure that the transport is completed cor-
rectly. The Transport Agent also determines the priority of the transport. The priority
of a transport depends on the kind of transport, the pending time since its creation,
and the nature of other transports in the system. Transport agents interact with other
related transport agents to determine the correct priority over time. AGV Agents are
responsible for executing the assigned transports.

Since the physical environment of a factory is very constrained, it restricts how
agents can use their environment. Therefore a Virtual Environment has been introduced
for the agents to live in. This Virtual Environment offers an application specific medium
that Application Agents can use to exchange information and coordinate their behavior.
One example of the use of the Virtual Environment are road signs. The Virtual Environ-
ment provides a logical map consisting of nodes and segments that corresponds with

2 http://www.egemin.com/
3 E’nsor R© is an acronym for Egemin Navigation System On Robot.

12 D. Weyns, G. Vizzari, and T. Holvoet

Fig. 4. Three-layer model applied to the AGV transportation application

the physical layout of the factory floor. At each node in the map, a sign in the Vir-
tual Environment represents the cost to a given destination for each outgoing segment.
The cost per segment is based on the average time it takes for an AGV to drive over
the segment. This cost has a static part that depends on the length and the properties
of the segment, and a dynamic part that depends on the recent traffic load on the seg-
ment. The Virtual Environment maintains the dynamic part of the cost of a segment
according to the time AGVs are delayed on the segment. The AGV Agent perceives
the signs in the Virtual Environment, and uses them to determine which segment it
will take next. Transport Agents use the Virtual Environment to find AGV agents to
assign the transports, and to follow the progress of the assigned transports. To assign
the transport, the Transport Agent negotiates with AGV Agents of idle AGVs near to

Environments for Situated MAS: Beyond Infrastructure 13

the location of the load. Once the transport is assigned, the awarded AGV handles the
transport.

Execution Platform. The Message Transfer System enables agents to send messages to
each other. The E’nsor software that deals with the low-level control of the AGVs is
fully reused. As such the AGV Agents control the movements of the AGVs on a fairly
high level.

Since the only physical infrastructure available to the agents is a wireless network to
communicate, the Virtual Environment is necessarily distributed. In effect, each AGV
and transport base in the system maintains a local Virtual Environment, which is a local
manifestation of the Virtual Environment. Synchronization of the state of the local Vir-
tual Environment with local Virtual Environments of neighboring AGVs and transport
bases is supported by the ObjectPlaces [15] middleware. The local Virtual Environment
uses the ObjectPlaces middleware by sharing objects in a tuplespace-like container,
called an objectplace. Each AGV and each transport base has one objectplace locally
available. Objects in objectplaces on remote AGVs and transport bases can be gathered
using a view. A view specifies (1) which objectplaces need to be included in the view
(e.g. the objectplaces of all AGVs within a specific range), and (2) what objects need to
be included in the view (e.g. positions of AGVs).

The AGV software runs on Windows CE, the Transport Base software runs on Win-
dows XP.

Physical Infrastructure. The AGV machines are equipped with a Pentium III processor.
AGVs can interact with the physical infrastructure via sensors, actuators and commu-
nication infrastructure. Transport bases are equipped with a Pentium IV processor and
provides communication infrastructure for Transport Agents to communicate. Com-
munication between AGVs and transport bases happens via a wireless communica-
tion network. The factory floor consists of navigation infrastructure for the AGVs, the
transportation system infrastructure, the loads that AGVs have to transport, etc.

3.3 TOTA: A Mobile Computing Application

As a final example, we discuss an application that supports visitors of a museum to
retrieve information about art pieces, to orientate in the museum, and to meet each other
in case of organized groups [5]. This mobile computing application is deployed on top
of the TOTA [16] middleware. The application is classified as dynamic infrastructure
in the classification we have proposed in Sect. 2.2.

Visitors are provided with PDAs, and further it is assumed that the museum is pro-
vided with a dense distributed network of computer-based devices, associated with
rooms, art pieces, alarm systems, climate conditioning systems, etc. The topology of
this network dynamically changes when visitors enter, leave or move through the mu-
seum, or also when art pieces are moved, e.g., for special exhibitions. The activities of
visitors are typically contextual, i.e., related to the environmental setting (rooms, types
of art pieces, members of a group, etc.).

14 D. Weyns, G. Vizzari, and T. Holvoet

The museum application is build on top of the TOTA middleware (see also Sect. 2.3).
TOTA enables the interaction among a network of possibly mobile nodes, each running
a local version of TOTA. Each node holds a reference to a limited set of neighboring
nodes. The structure of the network is automatically updated by the nodes to support
dynamic changes (nodes that enter, move or fail). Entities that live in this dynamic space
are able to inject tuples on each node. A TOTA tuple is defined in terms of a content and
a propagation rule. Tuples injected in a node are spread by the middleware according
to the propagation rule. This rule can also defines how the content of the tuple changes
during propagation. In this way it is possible to implement spacial related coordination
mechanisms, such as fields, removing the burden of coordination from the agents. A
detailed study of TOTA can be found in [16].

Fig. 5 depicts the three-layer model applied for the museum application.

Fig. 5. The three-layer model applied to the museum application

Environments for Situated MAS: Beyond Infrastructure 15

MAS Application Layer. The situated MAS consists of two basic types of agents, Art-
work Agents and Visitor Agents that are associated with active entities in the museum.
Each agent is able to inject and perceive application specific tuples in their environment.
Besides, the MAS consists of system nodes that provide support for tuple propagation
(not depicted in Fig. 5). A Visitor Agent can inject a Query tuple in the TOTA infrastruc-
ture to indicate his/her interest for a particular art piece. Such a tuple creates a gradient
field leading to the queried art piece. The corresponding Artwork Agent react to the
Query tuple by injecting an Answer tuple. This Answer tuple can reach a tourist even
while he/she is moving. Thus, the gradient fields guide the interested visitors towards
the source of interest. If a visitor is interested in locating a specific artwork, its Visitor
Agent senses the field generated by that artwork, that guides him toward the artwork 4.

Visitor Agents can also express their interest for a group meeting. Therefore the
tourists inject Meeting tuples in the TOTA infrastructure. Tourists then have to follow
downhill the gradient field generated by the farther other tourist in the group. This way
tourists will move toward each other, to meet in their barycenter room.

Artwork and Visitor Agents are examples of Application Agents, while Query, An-
swer and Meeting tuples and their corresponding gradient fields are domain specific
objects that are part of the Application Environment.

Execution Platform. TOTA is a generic middleware infrastructure that supports mech-
anisms for the management of field diffusion (i.e. transmission of fields among TOTA
peers) and the management of dynamism in the structure of the TOTA network. TOTA
offers support to develop application specific tuples as well as agents. For example,
the Meeting tuple in the museum application is based on the generic Gradient tuple
and Downhill tuple defined by TOTA, and the Artwork Agent is based on the generic
AgentInterface also provided by the TOTA middleware.

The museum application runs on the Familar distribution of Linux.

Physical Infrastructure. The museum application is hosted on Compaq IPAQ PDAs,
equipped with 802.11b wireless network devices. A similar kind of equipment must be
associated with the other nodes of the network, including the artworks that host Artwork
Agents.

3.4 Discussion

The three example applications clearly illustrate how agents and the environment cross-
cut the three layers of the MAS model. In the MMASS application, the MAS Appli-
cation (i.e., Application Agents and the Application Environment) runs on top of a
dedicated MAS Framework, while in the AGV and the TOTA applicaton the MAS Ap-
plication directly runs on top of generic middelware infrastructure. In general, applica-
tions of the class distributed infrastructure are candidates to be supported by generic
middleware.

In the MMASS and the AGV application, the Application Agents experience the
Application Environment as a common shared entity. In the TOTA example, the Appli-
cation Agents are aware of the network topology, changes in the context are reflected in

4 We have simplified the explanation of this example, for a detailed discussion see [5].

16 D. Weyns, G. Vizzari, and T. Holvoet

modifications of perceived gradient fields. An interesting research issue is the relation-
ship between the way Application Agents experience the Application Environment and
the underlying executing platform and the physical infrastructure.

All the discussed applications reify elements of the physical environment. All of
them also augment this environment with additional elements (gradient fields, marks,
etc.) to enable the situated agents to better exploit the environment. Such additional
support for indirect interaction has consequences on different layers of the applications,
typically the two top layers of the model. This additional support for indirect interaction
illustrates how the environment, as a first-order abstraction, can be used creatively in
the design and implementation of the problem solution.

4 Conclusion

Generally, the environment is not considered as a first-order abstraction in the MAS re-
search community. Often, the environment in MASs is confused with the infrastructure
on which the MAS is deployed. As a consequence, the functionality of the environment
is mostly integrated in the MAS in an implicit or ad-hoc manner. To clarify the con-
fusion between the concept of the environment and the infrastructure of the MAS, we
have presented a three-layer model for situated MASs. The three-layer model promotes
the agents as well as the environment as first-order abstractions. The MAS application
logic is located on top, the middle layer consists of the software infrastructure, and
the bottom layer of the model represents the physical infrastructure. Agents and the
environment crosscut the three layers of the model.

Starting from this model, we have proposed a classification of situated MASs based
on the physical infrastructure. We have applied the three-layer model to three
applications that represent different classes of the classification.

The major conclusion are:

1. Environment and infrastructure are no synonyms; more than that, the Applica-
tion Environment as well as the Application Agents exploit infrastructure of the
MAS.

2. The Application Environment is a powerful instrument that can be used creatively
in the design of a MAS solution, helping to manage the complexity of engineering
real-world applications.

An interesting track for future research in to study the relationship between the
structure of the environment at the MAS Application layer (as experienced by the
Application Agents) and the underlying execution platform and physical infrastructure.

Acknowledgements

This research is supported by the K.U.Leuven research council (AgCo2) and the Flem-
ish Institute for Advancement of Research in Industry (EMC2), and was partially funded
by the Italian Ministry of University and Research within the FIRB project
Multichannel Adaptive Information Systems.

Environments for Situated MAS: Beyond Infrastructure 17

References

1. Wooldridge, M., Jennings, N.: Intelligent agents: Theory and practice. The Knowledge
Engineering Review 10 (1995) 115–152

2. Ferber, J.: Multi–Agent Systems, An Introduction to Distributed Artificial Intelligence.
Addison–Wesley (1999)

3. Weyns, D., Parunak, V., Michel, F., Holvoet, T., Ferber, J.: Environments for Multiagent
Systems State-of-the-Art and Research Challenges. In: E4MAS. Volume 3374 of Lecture
Notes in Computer Science., Springer (2005)

4. Brueckner, S.: Return from the Ant, PhD Dissertation. Humboldt-Universitat Berlin, Ger-
many (2000)

5. Mamei, M., Zambonelli, F., Leonardi, L.: Programming Pervasive and Mobile Computing
Applications with the TOTA Middleware. In: 2nd IEEE International Conference on Perva-
sive Computing and Communication (Percom2004), IEEE Computer Society (2004)

6. Couloris, G., Dollimore, J., Kindberg, T.: Distributed Systems: Concept and Design (3rd
ed.). Addison Wesley (2001)

7. Weyns, D., Steegmans, E., Holvoet, T.: Towards Active Perception in Situated Multi-Agent
Systems. Applied Artificial Intelligence 18 (2004) 867–883

8. Sycara, K., Paolucci, M., Velsen, M.V., Giampapa, J.: The RETSINA MAS Infrastructure.
Autonomous Agents and Multi-Agent Systems 7 (2003) 29–48

9. Bellifemine, F., Poggi, A., Rimassa, G.: Jade, A FIPA-compliant Agent Framework. 4th In-
ternational Conference on Practical Application of Intelligent Agents and Multi-Agent Tech-
nology (1999)

10. Mamei, M., Zambonelli, F.: Spatial Computing: the TOTA Approach. Self-* Approaches to
Distributed Computing, Lecture Notes in Computer Science Hot Topics Series (2005)

11. Bandini, S., Manzoni, S., Vizzari, G.: Situated Cellular Agents: A Model to Simulate Crowd-
ing Dynamics. IEICE Transactions on Information and Systems: Special Issues on Cellular
Automata E87-D (2004) 669–676

12. Schadschneider, A.: Cellular automaton approach to pedestrian dynamics. In: Pedestrian and
Evacuation Dynamics. Springer-Verlag (2002) 75–98

13. Bandini, S., Manzoni, S., Simone, C.: Dealing with Space in Multi–Agent Systems: A
Model for Situated MAS. In: Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems, ACM Press (2002) 1183–1190

14. Weyns, D., Schelfthout, K., Holvoet, T.: Design and evolution of autonomic application soft-
ware, DEAS, St. Louis, USA, 2005. (http://www.cs.kuleven.ac.be/∼danny/deas 2005.pdf)

15. Schelfthout, K., Weyns, D., Holvoet, T.: Middleware for protocol-based coordination in
dynamic networks. In: MPAC ’05: Proceedings of the 3rd international workshop on Mid-
dleware for pervasive and ad-hoc computing, New York, NY, USA, ACM Press (2005)

16. Mamei, M., Zambonelli, F., Leonardi, L.: Tuples On The Air: A Middleware for Context
Aware Computing in Dynamic Networks. In: International ICDCS Workshop on Mobile
Computing, IEEE Computer Society (2003)

Holonic Modeling of Environments for Situated
Multi-agent Systems

Sebastian Rodriguez, Vincent Hilaire, and Abder Koukam

Université de Technologie de Belfort-Montbéliard,
Systems and Transports Laboratory,

90010 Belfort Cedex, France
Tel.: +33 384 583 837, Fax: +33 384 583 342

sebastian.rodriguez@utbm.fr

Abstract. In a Multi-Agent Based Simulation (MABS) special atten-
tion must go to the analysis, modeling and implementation of the en-
vironment. Environments for simulation of real world problems may be
complex. Seeing the environment as a monolithic structure only reduces
our capacity to handle large scale, real-world environments. In order to
support this type of environments, we propose the use of an holonic per-
spective to represent the environment and the agents. In our approach,
agents and environment are represented by holons. The environment de-
fines a holarchy. Each agent belong to a specific holon in this holarchy
following its needs.

Keywords: Holonic modeling, environment of MAS, simulation.

1 Introduction

It is generally accepted that multi-agent systems (MAS) operate within an envi-
ronment [23, 19]. In a Multi-Agent Based Simulation (MABS), special attention
must go to the analysis, modeling and implementation of the environment [20].
Indeed, it simulates a real-world environment and agents represent acting entities
in this environment.

Environments for simulation of real world problems may be complex. In-
deed, a real world problem, as the one we present in this paper, is frequently
characterized by an environment composed of heterogeneous and numerous en-
tities. However, current practice of MABS modeling and simulation tends to
consider the environment as a monolithic structure. This approach, even if use-
ful in certain situations, limits our capability to develop large scale agent based
simulations.

In order to support large scale, real world environments, we propose to use
a holonic perspective to represent both the environment and the agents. The
interest of a holonic view of the environment is that it provides a scalable multi-
level model to express real-world environments. The designer is able to represent
different levels of detail, from a high-level coarse-grained view of the system to
a low-level fine-grained one.

D. Weyns, H. Van Dyke Parunak, and F. Michel (Eds.): E4MAS 2005, LNAI 3830, pp. 18–31, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Holonic Modeling of Environments for Situated Multi-agent Systems 19

Defined by Koestler [15] as entities that can not be considered as wholes nor
parts in an absolute sense, Holons provide a possible answer to this problem.
According to Koestler, a holon is a self-similar structure that consists of several
holons as sub-structures. The hierarchical structure composed of holons is called
holarchy. Holonic systems have already been used to model a wide range of sys-
tems, Manufacturing systems [3] Transportation [4], Adaptive Mesh Problem[30]
and Cooperative work[1], to mention a few.

In order to show how holonic concepts can be applied to model and simulate
large environments, we present in this paper a holonic based model for the traffic
network of an important industrial plant of the east of France. The Peugeot SA
(PSA) plant is located near two towns and directly connected to the highway
and the railway. Within a surface of over 250 hectares, the plant produces more
than 1700 cars per day. The plant can be seen as a small town with a high density
of traffic that needs to be regulated. A simulator was built to detect possible
bottle-necks and evaluate the plant’s design. In order to produce a scalable and
reliable traffic simulator, we must carefully model this environment to be both
efficient and realist. The results we obtained from the simulations aimed first at
identifying groups of buildings with an important product exchange and second
at evaluate plant structure modifications. These results are not in the scope of
this paper so we do not present them.

The use of holons to model both, environment and agents, is the natural
consequence of seeing the environment as an active entity, and not merely as a
passive component modified by agents at will. The environment is seen as an
active entity, capable of interacting with agents and able to enforce the environ-
mental principles [23].

The paper is organized as follows : section 2 introduces our framework for
holonic multi-agent systems. Section 3 discusses the holonic environment model
and simulation principles. Section 4 presents related works and, eventually,
section 5 concludes.

2 Holonic Multi-agent Systems

Before discussing the holonic model of the environment, we introduce in this
section the terminology used to address the holonic structure and the compo-
sition of holons. More importantly, we present a brief overview of our holonic
framework [30].

We distinguish two main aspects that overlap in a holon. First, the status
of the members (or sub-holons) in the composition of the higher level holon
(or super-holon). Second, the coordination mechanism used by the sub-holons
to achieve a goal or task. In other terms, the interactions undertaken by the
member to exchange information, distribute tasks, etc.

In order to provide a clear distinction between these two aspects, the frame-
work is based upon an organizational approach. While the framework offers
means to model both aspects, in this paper we will limit the discussion to the
organization used to model the structure of a super-holon. This organization will

20 S. Rodriguez, V. Hilaire, and A. Koukam

Fig. 1. Holonic Organization

provide a terminology that make it easier to discuss about the holonic model
proposed for the environment in the next section.

The behavior of the members of a holon and their interactions are described
in terms of roles. These roles represent the “status” of the holon inside a specific
super-holon. From the super-holon’s point of view, a member may play three
roles : Head, Part and Multi-Part. To model this organization we have selected
the Role-Interaction-Organization (RIO) model [14]. The choice of RIO is justi-
fied by the possibilities offered by this approach (eg animation and proofs). This
organization, called Holonic Organization, is presented using a RIO diagram in
figure 1.

Our approach is based in an HMAS as a moderated group, where the head
represents the members of its super-holon with the outside world [9]. Different
ways to select this representative can be stated, eg. voting, authority, predefined
holon, etc. However, selecting the most suited one remains problem dependent.

In a complex system, multiple holarchies can be identified. A holarchy should
be seen as a “loose hierarchy” in the sense of [33], where there are no subordi-
nation relation.

As the representative, the holon plays the Head role. According to the
objective and rules of the super-holon, the Head ’s responsibilities and rights
may range from merely administrative tasks to being able to take decisions
concerning all members. The head role may be played by several member
simultaneously.

Members not playing the Head role may play either the Part or MultiPart
role. The Part role is played by those members belonging to a single super-
holon and the MultiPart role by those members belonging to more than one
holon. These members may confer a certain degree of authority to the Head role
player when they join the super-holon. Its autonomy is then reduced because of
its obligations towards the super-holon. The degree of this autonomy lost may
variate according to the holon’s purpose.

The MultiPart Role is a special case of the Part Role. This role is played by
holons belonging to more than one Holon. Interesting possibilities are available
when a holon is shared. For instance, we can now see this holon as a gateway
between super-holons, allowing message forwarding. Imagine that holon a is

Holonic Modeling of Environments for Situated Multi-agent Systems 21

Fig. 2. University Example holarchy

shared by h1 and h2. Suppose that h1 confers to a the authority to accept new
members coming from h2. Now a can not only forward requests among members
of different super-holons, but also act as an ambassador of h1 inside h2. This can
be used to reduce the administrative load to the Head of h1, but also to provide
means for members of h2 to enter a new holarchy. Other possibilities are present
like trust mechanism based on recommendations of shared members, translation
of messages in different languages, etc.

These roles represent a generic framework describing high-level behaviors and
interactions between components of Holonic Multi-Agent System.

Lets consider the case of an university to illustrate the use of these roles.
If we consider the university as a holon, it can be model as being composed
of Departments and Research Laboratories. In turn a department holon can be
consider to be composed of professors and students. A professor may, in addition
to the lectures given inside a department, be a member of a research laboratory.
In this case, the professor is a MultiPart role player. This holarchy is depicted
in figure 2. “Pawns” represent holons / agents. Each pawn / holon may be
decomposed by dashed lines into sub-holons. We show in superscript the holonic
roles and in subscript the application dependent roles.

The way member will interact with holons outside its super-holon should be
specified in the holon’s creation. Depending on the goal of the holon different
ways to interact with the “outside” world are possible. It is important to keep in
mind, that Head, Part and MultiPart are roles and they describe the “status”
and interactions of members of a holon. Evenmore, holons may change the roles
they play at runtime.

This framework has been formalized using the RIO Model and properties
concerning self-organization have been prooven [31]. The formal specification

22 S. Rodriguez, V. Hilaire, and A. Koukam

is based upon the OZS formalism [10], which is a component of the RIO
model.

3 A Holonic Model for Traffic Networks

Multi-agent Systems operate within an environment [23, 19], and therefore, in
an Agent Based Simulation (MABS) special attention must go to the analysis,
modeling and implementation of the environment [20].

We propose the use of holarchies for the modelling of environments. In the
PSA example we want to simulate the traffic within the plant. The environment
of this simulation is defined by the topology of the plant. The agents will be the
different vehicles driving through the plant.

The environment will be represented by a holarchy. This holarchy defines
the organizational and topological structure in which agents will evolve. Each
environmental holon will enforce contextual physical laws and represent a specific
granularity level of the real plant topology. This holarchy is predefined as it
represents the real plant environment. Indeed, the latter can’t evolve and the
physical laws we need to enforce are known a priori.

3.1 Environment Model

In order to represent the geographical environment of the plant as a holarchy,
we have to find recursive concepts which represent the plant’s components. The
concepts we have chosen are described in the figures 3 and 4.

Figure 3 shows that a road is divided into links. A link represents a one way
lane of a road. A segment is composed of two exchange points, called input and
output exchange points, and, at least, one link. Exchange points let vehicles pass
from one link to the other. And they are always shared by at least two segments.

Figure 4 presents the hierarchical decomposition of the environment of the
plant. We can see that the industrial plant is composed of a set of zones, that

Fig. 3. Roads, Segments, Links and Exchange Points

Holonic Modeling of Environments for Situated Multi-agent Systems 23

Fig. 4. Conceptual view of the plant

contain Buildings and Segments. Buildings and Segments can also communicate
through shared exchange points. Usually, an exchange point represents a cross-
road, but it can also represent an entrance used by trucks to access buildings. A
zone may also be recursively decomposed into smaller zones.

ExchangePoints are always shared by two segments or one segment and a
building. As we can see the exchange point is a “special” role from the “holonic
point of view” since the role is actually shared by more than one super-holon
(Segment or Building) by definition.

Such a hierarchical decomposition of environments is based on the idea of
Simon, who defines a nearly decomposable system (NDS) [33] as presenting two
distinctive characteristics. The first characteristic is that the short-run behavior
of each sub-component is approximately independent of the short-run behav-
ior of other components. The second characteristic is that in the long run the
behavior of any one of the components depends only in an aggregate way on
the behavior of the other components. Based on this definition, we can define
a Nearly Decomposable Environment (NDE) as the environment where we can
find a decomposition that respects the propositions stated for NDS. Traffic Net-
works can be seen as a NDE, since in the short-run the behavior and phenomena
that may exhibit a zone of the traffic remains independent of the behavior of
other components. Indeed, phenomena like congestion, jams and others, remain
localized in a zone before spreading.

This model presents several advantages when compared to a global represen-
tation. First, no size limit is imposed by the model. This enables us to use the
same environment decomposition to simulate the traffic inside a city or a (much)
smaller industrial plant. If required, semantic information can be introduced; so
instead of zones, we will represent quarters, blocks, etc. [7].

Another interesting characteristic is that all necessary information to simu-
late the traffic inside a link is local (other vehicles, roadsigns, etc). This makes

24 S. Rodriguez, V. Hilaire, and A. Koukam

the model easier to distribute in a network and leaves the door open to Real-Time
applications as well as Virtual Reality implementations.

In this work we have concentrated in the traffic network, but the decompo-
sition of the environment may continue to provide a higher level of detail. For
instance, a building can be decomposed in Rooms and Exchange Points(doors).
The model provides a simple and flexible way to decompose different types of
environments. Even more, it offers means for these different environments to
coexist in the same simulation.

In situated MAS, the environment contains its own processes that may change
its state independently of the embedded agents [36]. These active processes are
in charge of enforcing the environmental laws (in our case physical laws). In
large scale simulation, hundreds, or even thousands, of agents may be present in
the environment. As a possible solution, we advocate for the decomposition of
the environment into regions capable of locally computing the proper reaction to
agents’ influences. However, each region is not self-contained but approximately
independent in the “short-run”. In the long run these region must be considered
as parts of a whole, larger environment. This basic idea has been applied, in this
paper, to the modeling of a traffic network.

Holonic MAS can be used to model and implement such an environment.
This allow us to maintain multiple levels of granularity and to see each one of
these regions as a holon.

On the other hand, this type of decomposition imposes a highly hierarchical
and decentralized representation of the environment. This could present some
disadvantages when the environment presents some global ”variables” accessible
to all agents.

3.2 Agent-Environment Interaction

The need to make a clear distinction between the body and the mind of the
agent has been acknowledged by many MAS researchers [37, 19]. In this section
we describe how this distinction is taken into account and how the agent interacts
with the environment it is in.

Inside an industrial plant, different types of vehicles coexist (cars, trucks,
etc). Furthermore, the drivers do not necessarily behave the same way. In an
unorganized traffic scenario, the psychology of the driver is of great importance
[24]. In our model, the driver is able to change a set of variable that affect
the vehicle’s state. The environment ensures that the environmental rules are
respected. The model of a vehicle, and the relation between body and environ-
ment, has been influenced by the work presented in [19]. We consider the vehicle
as composed of three fairly independent modules, figure 5.

Physical Characteristics. Contains physic related contants like maximal
speed, maximal acceleration/deceleration, etc. and a set of variable that the
agent can modify at will, like acceleration.

Control Logic. Provides a façade that maps driving logic commands, like
“speedup”, to values that can be assigned to the physic characteristics variables.

Holonic Modeling of Environments for Situated Multi-agent Systems 25

Fig. 5. Vehicle Model

Driving Logic. Encapsulates the actual behavior of the agent, including Route
Planning.

In the real world, the driver (encapsulated in the DrivingLogic) does not
control the vehicle’s speed directly. He actually changes the speed by acceler-
ating/decelerating. This fact is modeled by letting the driver modify only cer-
tain variables of the PhysicalCharacteristics. These variable are later used by
the environment to adjust the vehicle’s speed according to the environmental
principles.

The PhysicalCharacteristics Module presents a standardized representation
of the Vehicle’s state to the environment. Every simulation loop the environment
will take in consideration this state, the environment’s state and the environ-
mental principles, and generates the appropriate responses.

In order to provide an easier implementation of different driving logic, the
ControlLogic module translates driving commands, like “speedup” or “slow
down”, into the precise values of acceleration. This approach enable a rapid
prototyping of different behaviors using a high-level description.

Vehicles can query their current link to obtain information about road sign,
traffic lights, maximal speed, etc. They can also request information about ad-
jacent link to the exchange points.

3.3 Simulation

As presented in section 3.1, the environment is modeled as a holarchy. Each
environmental holon represents a specific context. In the PSA example, it is a
specific place in the plant. These places have different granularity levels according
to their level in the holarchy. During the simulation, vehicle agents move from
one holon to another and the granularity is chosen using execution or simulation
constraints.

The dynamic choice of the environment granularity level during the simu-
lation must be transparent for the agents. In order to do this, agents use our
holonic framework and specifically ExchangePoint holons which enables the
communication between holons of the same level and connected in the plant

26 S. Rodriguez, V. Hilaire, and A. Koukam

1..∗
Role

1.. ∗Role

Segment

ExchangePoint Link

Road1 Crossroad1−2 Road2
Truck1

Segment2Segment1

(1)

(2)

(3)

(4)

Fig. 6.

1..∗
Role

1.. ∗Role

Segment

ExchangePoint Link

Road1 Crossroad1−2 Road2Truck1Segment2Segment1

Fig. 7.

topology. Figure 6 describes the sequence of messages exchanged between the
ExchangePoint, a vehicle and the Segment’s Head. The truck agent is moving
along segment 1 and requests the exchange point to forward a merging request.
The exchange point forwards the request and receives a reply. The reply is then
forwarded to the truck. If the reply is positive the truck can merge with the
segment 2 holon as shown in figure 7. These interaction sequences are a mean
to represent the influence/reaction model [8]. Indeed, the agent emits influences
in asking to merge with a specific holon. The environment is able to determine
the eventual answer according to jams or environment properties.

This approach enables one to describe the environment with multiple levels
of granularity examples are given in figures 8 and 9. In figure 8 we can view the
simulation of several roads, crossroads and buildings. The figure 9 is a more fine
grain simulation of a crossroad. Nevertheless the simulation of the rest of the
plant is always running in the two cases. Each level stores pertinent information

Fig. 8. View of different crossroads and buildings

Holonic Modeling of Environments for Situated Multi-agent Systems 27

Fig. 9. Crossroad close up

about the topology, characteristics and environment laws such as adjacent links,
road signs, etc. These different granularity levels can coexist during a simulation.
The advantages of this approach is threefold. First, it enables the decomposition
of the complexity of the environment in an holarchy of components with only
pertinent aspects at each level. Second during the simulation the pertinent level
of detail can be automatically chosen to be more efficient.

Finally, in order to support real-time application with high density of agents,
the environmental rules can be assigned by zone or region. This lets us regu-
late the behavior of the system according to the simulation requirements. For
instance, in a Virtual Reality simulation, a high level of precision is required in
the surroundings of the avatar1. On the other hand, in distant regions, certain
environmental rules can be relaxed or annulled, such as collision detection.

4 Related Works

Considering the importance of traffic flow simulation, it is not surprising that a
vast number of models and simulators can be found. Although presenting a full
survey of all these approaches is out of the scope of this work, in this section we
present some of the most important models and their implementations.

Mainly two different approaches are used in traffic simulation, Macro and
Micro Simulations. Macroscopic models [13] describe the traffic from its observ-
able global behavior. They describe the system with a set of global variables
like flow rate, flow density and average speed. Such macroscopic representations
1 Virtual representation of the human user.

28 S. Rodriguez, V. Hilaire, and A. Koukam

are based on hydrodynamic theory [18, 27] and queuing models [12, 38]. One
important advantage of this type of model is the low computational resource re-
quired (compared to microscopic simulation). On the other hand, these models
ignore any individual behavior. Various simulators, like NETSTREAM [35] or
METANET [16] implement macroscopic models.

Microscopic models, on the other hand, intend to provide a precise simulation
of the traffic state. Different approaches have been proposed, Cellular Automata
[29, 22, 17], Particles [21], etc. It is in this type of models that ABS has emerged as
a powerful tool for traffic simulation[28, 5, 2, 26, 32]. ABS offer the possibility to
introduce individual behaviors, and simulate how their difference may influence
traffic flow [24].

The Smartest project [34] provides an extensive survey of microscopic traffic
simulators. These simulators where conceived with different purposes and aiming
different types of traffic and networks (Urban, Free way, etc.).

The main difference between these simulators and our approach is in the
scope and intentions of the developed systems. While those systems concentrate
solely on traffic and its analysis, we include the possibility to analyze and under-
stand its impact in depending activities. Even if the plants objects is to optimize
its production traffic lays in the very heart of the system. Our model offers a
modular design letting the responsibles concentrate in specific aspects without
neglecting the consequences of their modifications in the infrastructure and/or
functioning of the site.

5 Conclusion

In this paper we have presented an approach for the modelling of environments
for situated multi-agent based simulations. The modelling is based upon holonic
concepts. The environment is represented as a holarchy. Each holon models
an environment part which may be decomposed in sub-entities. This approach
presents several advantages when compared to a global representation.

First, no size limit is imposed by the model, this enables us to use the same
environment decomposition to simulate the traffic inside a city or a (much)
smaller industrial plant.

Second, the granularity may evolve during the simulation according to per-
formance and precision needs.

Third, the distribution on a network of the simulation can be done easily by
choosing which part of the holarchy could be executed where [30].

Using this approach we have simulated the traffic within the PSA plant and
we have observed plant emergent properties such as functional exchange be-
tween buildings, traffic density, jams, etc. However, using the concept of Nearly
Decomposable Environment, we can identify other types of environments that
result as suitable candidates for a holonic modeling. In general terms, we can
say that a specific environment is suitable for a holonic modeling, if we can
divide the “global” environment into sub-components where the environmen-
tal processes can locally compute the response of the environment to agents
actions / influences.

Holonic Modeling of Environments for Situated Multi-agent Systems 29

This type of hierarchical decomposition of the environment has already been
successfully applied in several applications, mainly in the field of Virtual Reality
[6, 7]. We can find a set of self-similar components to describe the environment
in the model proposed by [25].

Future research will consider new simulation cases in order to extract a
methodology from our approach. We are developping a formal specification
model for the concepts we have presented which may enable verification and
validation [31]. An API in JAVA using the MadKit platform [11] has been de-
veloped. In addition, we intend to further deepen the concepts of NDS and NDE
for situated MAS simulation.

Acknowledgments

The authors would like to thank the three anonymous reviewers of the E4MAS
workshop for their valuable remarks that helped improve the presentation of this
work. This paper has also benefited from the discussions with other members of
the SeT Laboratory, specially Nicolas Gaud.

References

1. Emmanuel Adam, Rene Mandiau, and Christophe Kolski. Une Méthode de modeli-
sation et de conception d’organizations Multi-Agents holoniques, chapter 2, pages
41–75. Hermes, 2002.

2. E. Bonakdarian, J. Cremer, J. Kearney, and P. Willemsen. Generation of ambient
traffic for real-time driving simulation. In 1998 Image Conference, pages 123–133,
August 1998.

3. H. Van Brussel, J. Wyns, P. Valckenaers, L. Bongaerts, and P. Peeters. Reference
architecture for holonic manufacturing systems: Prosa, 1998.

4. H.-J. Bürckert, K. Fischer, and G.Vierke. Transportation scheduling with holonic
mas - the teletruck approach. In Proceedings of the Third International Conference
on Practical Applications of Intelligent Agents and Multiagents, 1998.

5. Nurham Cetin, Adrian Burri, and Kai Nagel. A large-scale agent-based traffic mi-
crosimulation based on queue model. In Tristan Chevroulet and Aymeric Sevestre,
editors, Swiss Transport Research Conference 2003 - STRC 03, 2003.

6. Stéphane Donikian. How introduce life in virtual environments: a urban envi-
ronment modeling system for driving simulation. Technical report, Institut de
Recherche en Informatique de Toulouse, octobre 1996.

7. N. Farenc, R. Boulic, and D. Thalmann. An informed environment dedicated to
the simulation of virtual humans in urban context. In Proc. Eurographics ’99,
Milano, Italy, 1999.

8. Jacques Ferber and Jean-Pierre Müller. Influences and reaction: a model of situated
multiagent systems. In ICMAS’96, december 1996.

9. Christian Gerber, Jörg H. Siekmann, and Gero Vierke. Holonic multi-agent
systems. Technical Report DFKI-RR-99-03, Deutsches Forschungszentrum für
Künztliche Inteligenz - GmbH, Postfach 20 80, 67608 Kaiserslautern, FRG, May
1999.

30 S. Rodriguez, V. Hilaire, and A. Koukam

10. Pablo Gruer, Vincent Hilaire, Abder Koukam, and P. Rovarini. Heterogeneous
formal specification based on object-z and statecharts: semantics and verification.
Journal of Systems and Software, 70(1-2):95–105, 2004.

11. Olivier Gutknecht and Jacques Ferber. The MADKIT agent platform architecture.
In Agents Workshop on Infrastructure for Multi-Agent Systems, pages 48–55, 2000.

12. D. Heidemann. A queuing theory approach to speed-flow-density relationships.
In Proceedings of the 13th International Symposium on Transportation and Traffic
Theory, pages 103–118, Lyon - France, July 1996.

13. Dirk Helbing. Theoretical foundation of macroscopicnext term traffic models. Phys-
ica A: Statistical and Theoretical Physics, 219:375–390, 1995.

14. Vincent Hilaire, Abder Koukam, Pablo Gruer, and Jean-Pierre Müller. Formal
specification and prototyping of multi-agent systems. In Andrea Omicini, Robert
Tolksdorf, and Franco Zambonelli, editors, Engineering Societies in the Agents’
World, number 1972 in Lecture Notes in Artificial Intelligence. Springer Verlag,
2000.

15. Arthur Koestler. The Ghost in the Machine. Hutchinson, 1967.
16. A. Kotsialos, M. Papageorgiou, C. Diakaki, Y. Pavlis, and F. Middelham. Traffic

flow modeling of large-scale motorway networks using the macroscopic modeling
tool metanet. Intelligent Transportation Systems, IEEE Transactions, 3(4):282–
292, 2002.

17. Hideki Kozuka, Yohsuke Matsui, and Hitoshi Kanoh. Traffic flow simulation using
cellular automata under non-equilibrium environment. In IEEE International Con-
ference on Systems, Man, and Cybernetics (SMC’2001), pages 1341–1345, October
2001.

18. M. J. Lighthill and G. B. Whitham. On kinematic waves. ii. a theory of traffic flow
on long crowded roads. In Proc. Roy. Soc. London. Ser. A. 229, pages 317–345,
1955.

19. Fabien Michel. Formalisme, méthodologie et outils pour la modélisation et la sim-
ulation de systèmes multi-agents. PhD thesis, Université de Montpellier II, 2004.

20. Fabien Michel, Abdelkader Gouaich, and Jacques Ferber. Weak interaction and
strong interaction in agent based simulations. In The 4th Workshop on Multi-Agent
Based Simulation MABS’03 at AAMAS 2003, Melbourne, Australia, july 2003. to
appear in a LNCS volume.

21. Kai Nagel. Particle hopping models and traffic flow theory. Physical Review E.,
53(5):4655–4672, 1996.

22. Kia Nagel. Traffic at the edge of chaos. In Artificial Life IV, pages 222–235, 1994.
23. James Odell, H. Van Dyke Parunak, Mitch Fleischer, and Sven Breuckner. Mod-

eling agents and their environment. In F. Giunchiglia, James Odell, and Gerhard
Weiss, editors, Agent-Oriented Software Engineering (AOSE) III, volume 2585 of
Lecture Notes on Computer Science, pages 16–31, 2002.

24. Praveen Paruchuri, Alok Reddy Pullalarevu, and Kamalakar Karlapalem. Multi
agent simulation of unorganized traffic. In International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, Bologna, Italy, 2002. ACM.

25. L.S.C. Pun-Cheng. A new face-entity concept for modeling urban morphology.
Journal of Urban and Regional Information Systems Association, 12(3), 2000.

26. Bryan Raney and Kai Nagel. An agent-based microsimulation model of swiss travel:
First results. In Tristan Chevroulet and Aymeric Sevestre, editors, Swiss Transport
Research Conference 2003 - STRC 03, March 2003.

27. M. Rascle. An improved macroscopic model of traffic flow: Derivation and links
with the lighthill-whitham model. Mathematical and Computer Modelling, 35:581–
590, 2002.

Holonic Modeling of Environments for Situated Multi-agent Systems 31

28. Michel Resnick. Turtles, Termites and Traffic Jams. Explorations in massively
parallel microworlds. MIT Press, 1997.

29. M Rickert, K Nagel, M Schreckenberg, and A Latour. Two lane traffic simulations
using cellular automata. Physica A, 1996.

30. Sebastian Rodriguez, Vincent Hilaire, and Abderrafiâa Koukam. Towards a
methodological framework for holonic multi-agent systems. In Fourth Interna-
tional Workshop of Engineering Societies in the Agents World, Imperial College
London, UK (EU), 29-31 October 2003.

31. Sebastian Rodriguez, Vincent Hilaire, and Abderrafiâa Koukam. Fomal specifica-
tion of holonic multi-agent system framework. In Intelligent Agents in Comput-
ing Systems - The Agent Days in Atlanta, Lecture Notes in Computer Science.
Springer-Verlag, 2005. to appear.

32. Paulo C. M. Silva. Buses in miroscopic traffic simulation models. Technical report,
University of London, Centre for Transport Studies, May 1997.

33. Herbert A. Simon. The Science of Artificial. MIT Press, Cambridge, Massa-
chusetts, 3rd edition, 1996.

34. Project Smarttest. Smartest. final report. Technical report, Smartest Project,
2000.

35. E. Teramoto, M. Baba, H. Mori, Y. Asano, and H. Morita. Netstream: traffic simu-
lator for evaluating traffic information systems. In IEEE Conference on Intelligent
Transportation System, pages 484 – 489, Boston, MA USA, 1997.

36. Danny Weyns, H. Van Dyke Parunak, Fabien Michel, Tom Holvoet, and Jacques
Ferber. Environments for multiagent systems: State-of-the-art and research chal-
lenges. Technical report, The First International Workshop on Environments for
Multiagent Systems, 2004.

37. T. Wittig. ARCHON: An Architecture for Multi-Agent Systems. Ellis Horwood,
1992.

38. Tom Van Woensel and Nico Vandaele. Queuing models for uninterrupted traffic
flows. In PROCEEDINGS of the 13th Mini-EURO Conference. Handling Uncer-
tainty in the Analysis of Traffic and Transportation Systems, Bari, Italy, June 2002.

An Environment-Based Methodology
to Design Reactive Multi-agent Systems

for Problem Solving

Olivier Simonin and Franck Gechter

Laboratoire SeT (Systèmes et Transports),
Université de Technologie de Belfort-Montbéliard,

90010 Belfort cedex, France
{olivier.simonin, franck.gechter}@utbm.fr

http://set.utbm.fr/membres/simonin/

Abstract. Even if the multi-agent paradigm has been evolving for fif-
teen years, the development of concrete methods for problem solving
remains a major challenge. This paper focuses on reactive multi-agent
systems because they provide interesting properties such as adaptability
and robustness. In particular, the role of the environment, which is effec-
tively where the system computes and communicates, is studied. From
this analysis a methodology to design or engineer reactive systems is in-
troduced. Our approach is based on the representation of the problem’s
constraints considered as perturbations to stabilize. Agents are then de-
fined, in the second place, as a means of regulating the perturbations.
Finally, the relevancy of our proposition is justified through the devel-
opment of two solving models applied to real and complex problems.

1 Introduction

Even if the multi-agent paradigm has been evolving for fifteen years, the de-
velopment of concrete methods for problem solving remains a major challenge.
This paper addresses this problem by proposing a methodology aimed at de-
signing reactive multi-agent solutions. Such systems rely on reactive agents,
which are simple entities that behave following their perceptions [14]. We fo-
cus on reactive systems because they present interesting features such as self-
organization/emergent phenomena, robustness, adaptability, simplicity and re-
dundancy of the agents (and consequently low cost agent design). It has been
shown that this approach is efficient for tackling complex problems such as life-
systems simulation/study [31] [21] [26], cooperation of situated agents/robots
[38] [27] [9] [26], problem/game solving [8] [10],...

However, it is difficult to extract a generic method to build reactive-based
solutions facing (distributed) problems. This difficulty is due to the complexity
of such systems where agents and interactions are numerous and where global
dynamics are complex to control and/or predict.

As it has been emphasized in [31] and [28], the environment plays an im-
portant role in reactive multi-agent systems (MAS). It is the main place where

D. Weyns, H. Van Dyke Parunak, and F. Michel (Eds.): E4MAS 2005, LNAI 3830, pp. 32–49, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Environment-Based Methodology to Design Reactive MAS 33

the system computes, builds and communicates. In the problem-solving frame-
work, it is clear that one reactive agent can neither handle a representation of
the problem nor compute its solution. The resolution is obtained from numerous
agent-agent and agent-environment interactions [14] [31] [21]. Agent interactions
are reactions to perceptions, they participate directly in the solving processes,
but they do not provide a means to express the problem. So, the representation
of the problem can only be defined through the environment model. In this paper
we re-examine the role played by each element in collective systems, by focus-
ing on the environment. This work is motivated by the necessity of clarifying
the common points used in different environment-based techniques and reac-
tive agent-based MAS. Thus we present a synthetic view on reactive systems
by considering existing collective solving systems such as the pheromone-based
approach and the eco-resolution model. This analysis allows us to propose a
methodology aimed at building environment-based solving systems.

The proposed methodology establishes the link between the representation of
the problem, expressed as environmental constraints, and agent behaviors, which
are regulation items of the environmental perturbations. This method contrasts
with classical approaches that involve defining agents and interactions by fol-
lowing the expected organization (as proposed in [27] [28]). In our case, agents
are defined in the second place, and build as regulation processes depending on
the problem model. The environment is clearly defined as a first-class entity of
the multiagent system ([42] as shown the importance of such an approach in
multiagent conception).

The paper is structured as follows. Sect.2 presents a re-examination of re-
active MAS from an automatic control point of view and classical collective
models are analyzed. In Sect.3 the four main points of the methodology are intro-
duced, first with a general point of view and then in detail considering a concrete
use. This section ends with a comparison to related work. Section 4 illustrates
the methodology through two examples of applications: the satisfaction-altruism
model for decentralized cooperation between situated agents and a Physics based
model for localization and target tracking. Finally, in Sect.5, we conclude on the
proposed methodology and present some future work.

2 Examination of Collective Processes

2.1 Expression of Reactive MAS Within the Automatic Control
Approach

As opposed to the socio or bio inspired approaches, we propose a more pragmatic
engineering method for defining reactive agent-based problem solving systems.
Our approach is closely tied to the standard regulation loop defined in automatic
control. The goal of the problem solving is to build a solution, stable in time
and space, considering the formulation of a problem that has its own topology
(i.e. how the problem is structured in space) and dynamics (i.e. how the problem
evolves). Thus, the MAS can be considered as a regulation (or filtering) process.
As a consequence, solving a problem leads to defining the parameters of the

34 O. Simonin and F. Gechter

Agents
Problem
to solve

Result / Organisation

State of the System

Perturbations Perceptions

Interactions

agent model

real and/or virtual world

=
model

ENV. =
Problem

Fig. 1. Environment based solving principle

regulation loop in order to obtain a stable output (solution level) considering
the variations of the input (problem level).

The environment is defined as the input layer of the regulation loop, see Fig.1.
It translates the variations and the topology of the problem and presents them to
the agents. The organization is the output layer of the system. It represents the
state of the system on a spatial and temporal level. The regulation mechanism
is defined by the agents’ actions and their interactions. These interactions have
been divided into two categories. The first characterizes the agent-agent interac-
tions, which compose the direct branch of the regulation loop that is considered,
in automatic control, as amplification. This can be compared to positive feed-
back defined by Muller in [28]. The second, called the negative feedback, is the
regulation loop carried out by agents-environment interactions (these different
kind of interactions are detailed in Sect. 3.2). The environment is modified by
both the problem and regulation dynamics.

2.2 Analysis of Classical Collective Solving Models

In this section, we re-examine two widespread techniques of collective problem
solving: the eco-resolution and the pheromone-based models. This re-examinat-
ion considers the automatic control point of view exposed in the previous para-
graph. The goal of this section is to evaluate the place of the environment and
of the regulation mechanisms in these methods.

Eco-Resolution. The eco-resolution model [13][8] relies on the agentification
of all the elements of the problem. As a consequence the environment is divided
in a set of agents (for instance in the Towers of Hanöı problem, the disks and
the stacks will be defined as agents). Each agent is defined by the same reactive
model (the eco-agent model). An eco-agent has only 3 possible states: satisfied,
dissatisfied and attacked. It has 3 possible behaviors: (i) searching a place to flee
when attacked, (ii) attacking the agents that hinder its actions, (iii) running an
action to be satisfied. The resolution relies on the fact that when an agent is
attacked, it has to search a place to flee. If such a place does not exist it has to
attack its hinderers.

An Environment-Based Methodology to Design Reactive MAS 35

In this model each agent has to be satisfied to consider the problem solved,
corresponding to the achieving of a stable state (the solution representation).
An agent tries to move when attacked by another agent. This attack represents
a perturbation in the environment. The model then ensures that the attacked
agent tries to flee in order to regulate this perturbation (local interaction). If
this locate regulation cannot be performed, due to the presence of hinderers,
the attacked agent propagates the perturbation by attacking new agents. This
“recursive” process corresponds to the generation of a collective process, i.e. a
solving process at the macro level, leading to the whole solution (details in [13]).
However, this model can presents instable processes such as loops or oscillations.
It is then necessary to enhance agents’ perceptions and/or introduce knowledge
on the system state, as presented in [10] for the N-Puzzle solving.

Pheromone-Based Algorithms. The well known pheromones-based algo-
rithms are typical environment-based solving systems. Agents drop artificial
pheromones in the environment in order to create shared information (these
pheromones are chemical substances diffusing and evaporating). Here we illus-
trate the principle on the construction of an optimal path between a nest and
a resource place. The problem is represented by the nest, the resource and an
obstacle that define two possible paths of different length (as presented in [7]).
Agents drop pheromones as they move, then the pheromone is initially distrib-
uted along the two possible paths (probabilities to choose one of them are equal).
For the agents this repartition of pheromones represents an absence of informa-
tion. The resulting state of the environment, and consequently of the problem,
can be considered to be totally perturbed.

In order to allow the emergence of the optimal path, a reinforcement mecha-
nism is defined by a simple agent behavior. Agents move preferentially towards
directions with the maximum amount of pheromones. Consequently ants con-
centrate pheromones on the shortest path (details in [7]). This concentration
involves a reduction of the initial perturbation of the environment state. The
reinforcement mechanism leads, in time, to a stable state where only one path
is built and used between the nest and the resource. This state is character-
ized by equilibrium between the problem dynamics, made material by the dif-
fusion/evaporation phenomenon, and the resolution dynamics induced by the
agents.

In the case of pheromone-based algorithms, the emergent organization is
particular. It is not included in the agents states but directly in the environment
itself (areas concentrating pheromones).

3 Methodology for Building an Environment-Based
Solving System

3.1 General Description of the Methodology

Existing environment-based solving techniques are generally presented by re-
ferring to a set of implicit or explicit concepts (such as biological behaviors,

36 O. Simonin and F. Gechter

emergence principles, regulation loops, etc). Defining a methodology allows to
clarify the implicit methods used for the construction of many environment-
based systems. The two previous sections establish the role of the environment
that can be considered as the place where the problem constraints are expressed
and the multi-level resolution of these constraints thanks to agent behaviors.
This analysis leads to define a conception methodology for environment-based
solving processes, which is composed of four main steps:
1. Defining the problem’s model, i.e. the environment. It has to repre-

sent the problem to solve on both a topological and dynamic level (details
in next section). Modeling an environment implies also for the designer to
define almost an environment structure (for spatial representation, which
can be discrete or continuous) and the laws that govern its dynamics (as
analyzed in [42]). Note that the environment can be totally a virtual one or
include elements of the real world. In this last case, the environment can be
considered as an enhanced real world.

2. Defining agent perceptions. Agents must be able to perceive the envi-
ronmental perturbations modeling the problem. They have to detect states
and dynamics that are considered as problem constraints, in order to solve
them. Means of perception abilities are tackled in the next section.

3. Defining agents’ interaction mechanisms in order to reduce the per-
turbations. These mechanisms are defined in 3 levels:
(a) Provide individual and local reactions to the perceived constraints, i.e.

actions from agent to the environment.
(b) If these local actions are inefficient in some situations or can lead to

conflicts, even considering their combination, provide direct interactions
(agent-agent(s)) that enable cooperative processes. They have to reduce
conflicts/constraints perceived by agents and to perform complex tasks
(involving several agents).

(c) Provide actions to regulate the previous processes (local and cooperative)
when they present instability risks (amplifications, loops, etc..)

4. Measuring/Observing the result as an emergent structure, in terms
of agents (position, dynamics,...) or in terms of environment (structure,
topology,...) as defined in [29]. This structure is the consequence of the two
dynamics of the solving principle (i.e. the dynamics of the problem on one
side and the resolution dynamics on the other). This result can only be
measured and/or observed at a macroscopic level. Measuring organization
in reactive MAS is a recurrent problem. The next section gives some clues
in order to tackle with this issue.

A fifth optional step may be considered. It consists to iterate on the third
step after the measuring/observing phase. Indeed, the designer can discover,
while measuring/observing the resolution, that it neglected some constraints or
that instable behaviors are not taken into account (these ones are generally
difficult to forecast). Modifying agents’ interaction can then improve the system
efficiency (it is the parameter settings phase of the system). This phase can be
a process of trail and error and/or learning/optimization process with specific
algorithms such as gradient descent methods.

An Environment-Based Methodology to Design Reactive MAS 37

3.2 Detailed Points on the Methodology

The previous section describes the general meaning of the proposed methodology.
The goal of the current section is to give some clues in order to cope with each
point of the methodology. The key principles given are not necessarily exhaustive
but they represent the main directions that a designer can follow in order to build
up a reactive MAS solving process.

How to Build Up a Problem’s Model? Two main characteristics have to
be taken into account to build up an environment representing the problem’s
model: its topology and dynamics (as emphasized in [42]).

As for the topology, there are two main possibilities whether the problem’s
topology must be discretized or not. In fact, this choice depends also on what
kind of approach is used to deal with the agents’ decision processes and moves.
Indeed, if the agents have to follow a probability law to compute their next
position, the choice of a discrete representation is more relevant. For instance, if
pheromones [33] or Markov models [5] are key elements for the agents’ decision
process, using a discrete environment is the best choice. By contrast, if the moves
are computed considering Physics based force fields [17], [25], the environment
has to be continuous to better fit to agents’ behaviors.

Two main methods are widespread in order to deal with the dynamics. One
is a bio-inspired method using digital pheromones [33], [34]. In this case, the dy-
namics of the environment is tied to the evolution of the amount of pheromone
(evaporation, aggregation, diffusion,...). The second is a Physics based approach
and is linked to artificial potential fields [1] or force fields (gravitational or elec-
trostatic) such as these used in Co-Fields [25].

How to Perceive the Problem’s Constraints? The perception of the prob-
lem’s constraints that take place in the environment depends strongly on their
representation. Yet, we can use generic models such as the model for active
perception proposed in [41]. This is composed of 3 main modules (sensing, inter-
preting, filtering) that can be adapted to specific application. As for the proposal
of this paper, since only reactive agents are taken into account, the last two mod-
ules (interpreting and filtering) are reduced to their minimum. Hence, the key
point is the definition of the constraints’ sensing. This can be direct thanks to a
definition of an artificial vision-like ability (or smelling-like ability if it concern
pheromones) or indirect when the agents sustain the influences of fields present
in the environment.

Which Kind of Interaction Models for Reactive Agents? Basically, in-
teractions in MAS can be defined considering two orthogonal axes [14]. On one
side the type of the interaction (which can be direct or indirect) and on the other
side its nature (cooperation or competition).

Concerning the type of the interaction, indirect ones are usual in reactive sys-
tems because, due to the limit of each entity, the environment is used as a shared
memory. Agents have indirect “communication” via their changes of the environ-
ment (for instance dropping a mark [37], a pheromone [31], etc.). Such an approach

38 O. Simonin and F. Gechter

is very efficient to self-organize numerous entities and enable stigmergy processes
[6][26]. It is well suited to steps 3-b and 3-c of the proposed methodology.

Direct interaction, involved in particular in step 3-a of the methodology, can
take three forms: (i) one agent that physically acts on the environment (that can
possibly produce an environment-agent reaction), (ii) an agent-agent interaction
(which can be a physical interaction or a message/signal exchange) and (iii) one
agent interacting simultaneously with several others (through a signal emission,
its physical presence, etc.).

The nature of the interaction can be abstracted in two categories: cooperation
and competition. Generally cooperative interaction/actions are defined to solve
conflicts or to perform difficult tasks that cannot be performed by only one
agent. Reactive coordination can be placed in this category [14]. By contrast,
competitive interaction or attacking actions can be defined as direct influences
(as for instance in [8] [35]). Such interaction can express conflicts between agents
and trigger some behaviors solving them such as the escape behavior in Eco-
Resolution [13].

How to Measure the State of Balance of the System? The characteriza-
tion of the equilibrium of the system is a complex issue from both a theoretical
and practical point of view. In the context of problem solving, two kinds of
situation have to be considered depending on whether the problem is static or
dynamic. The difficulty of expressing equilibrium in complex systems is similar
to that encountered in biology for stable organisms. To avoid the static connota-
tion of the term equilibrium, the notion of homeostatic process is used to qualify
a stable organization/entity whatever its dynamics [6].

In the case of a static problem, where the constraints do not change in time,
the equilibrium of the solving system can be characterized by a stable state in
which the agents stop interacting. This is the simplest case to consider.

When the problem is dynamic, the task is much harder because the state
of balance of the system depends on whether there is equilibrium between two
dynamics (the problem and the solving process). Thus, state of balance cannot
be considered only as a measure of the interaction activity of the agents. Con-
sequently, a measure of the equilibrium (and by translation, a measure of the
organization) has to be designed. Much of the related work deal with the issue of
the measurement of the organization. In many cases, this measure is closely tied
to the intrinsic nature of the problem [17]. Another solution consists of designing
a measure based on the mechanisms of the system. For instance, the entropy can
be one of these measures. Entropy can be considered as a global estimation of
the organization of the system on a global topological level [2], as a local con-
sideration of the dynamics of each agent [32] or both of the two methods [20].
None of the propositions in the related literature deal with the nature of the
local mechanisms, however.

The issue of measuring the organization of a MAS is central when deploying
a problem solving application. Indeed, it is not only required characterizing the
state of balance of the system but also for evaluating its performance and, by
extension, the way of improving it by using learning algorithms for instance.

An Environment-Based Methodology to Design Reactive MAS 39

3.3 Related Work

Cybernetics Work. Cybernetics was defined by Weiner ([39]) as the study
of control and communication in the animal and the machine. During 1940’s
cybernetics introduced the feedback principle, or retroactive loop. With such
a loop, a system can adapt its actions to its own outputs. This approach is
well suited to stabilizing a system towards a predetermined goal. Although this
approach concentrated on the development of individual entities, its influence
on the swarm approach was important. Indeed, it emphasized that social insects
are also machines and that regulation loops exist at the colony level. Work of the
last decade has developed the study of social systems involving numerous entities
(social insects, collective robots, particle systems). In particular, such work has
shown the importance of the loop in linking agents to the environment ([31][28]).
This main loop, allowing collective solving, is present in our representation of
an environment-based solving system (Fig. 1). In a sense, this loop is similar to
that defined in cybernetics for one agent. We apply a similar approach in that
we consider regulation at the agent level but also at the macro/collective level.

MAS Methodologies. The multiagent community has proposed a set of me-
thodologies for the design and the analysis of MAS, such as Gaia [43], Adelfe
[3], Promotheus [30]. Most of these methodologies focus on agent definition and
their interactions, especially on deliberative agent architectures. For instance,
Adelfe methodology aims at designing adaptive MAS [3] considering the AMAS
agent architecture (for adaptive MAS). This one relies on agent’s attitude, com-
petences, beliefs and interactions language. Then the “cooperation failures” ac-
tivity, defined as the A7-S2 step of the Adelfe methodology, is defined following
social attitudes, such as incomprehension, ambiguity, uselessness, which are not
suitable to our reactive-based approach.

One particularity of our methodology is to focus on the problem-solving
framework considering collective systems. In existing works, methodologies are
generally devoted to software engineering, using object-oriented methodologies
[3] and organizational concepts such as role and group.

Nevertheless, an extended version of Gaia methodology presents interesting
elements in relation to our proposition. In particular, this methodology defines
the environment as a primary abstraction of MAS [44]. Authors propose to
first define the environment by considering resources that can be sensed and
consumed by agents. They point out the possibly constraints induced by their
accessibility. In the first step of our methodology, we let the designer defining
the constraints’ representation, and then defining agent resources can be a way
to model them. The second phase of the environmental modeling proposed in
[44] concerns agents perception. As for us it is emphasized that they depend on
both the environment model and the concerned application. Next phases of this
methodology do not focus on reactive-based solving processes.

Concerning methodologies devoted to reactive-based systems our approach
can be compared to the constructivism method, exposed in [15]. The construc-
tivism methodology aims at designing reactive Multi-Agent Systems for the

40 O. Simonin and F. Gechter

solving of spatially defined problems (such as features extraction in images,
cartographic generalization and spatial multi-criteria decision processes). This
technique, which is specific to spatialized problems (i.e. defined by a map or a
picture), is based on the interpretation of the position and state of the agents.
Consequently, it is not well adapted to dynamic problems. Nevertheless, as we
have exposed in our proposition, the problem constraints are defined and repre-
sented in the environment. By contrast, authors deal with problems where the
form of the solution is known in advance and then use it to define constraints
on the agents’ organization. However, [15] gives some interesting clues as to the
definition of spatially defined problem constraints.

4 Application

This section presents two applications following the four steps of the proposed
methodology.

4.1 The Satisfaction-Altruism Model

This model aims at providing a means of cooperation and of conflict solving to
reactive agents working in the same environment. As agents are simple, inten-
tionality does not exist in their behaviors, and only intelligent collective processes
can be considered at a macro level. So, in order to provide intentional interac-
tions while keeping collective properties, the model extends such an approach.
The artificial potential fields (APF) model is considered because of its efficiency
for collective and individual tasks (such as individual and team navigation). This
technique relies on the perception of attractive elements and obstacles present in
the agents’ close environment (details in [22] [1] [26]). The satisfaction-altruism
model relies on this extension and on the definition of satisfaction states inspired
by the homeostatic behavioral model of C. Hull [19].

1. In order to express agent intentions, the satisfaction-altruism model [35][36]
introduces new artificial fields in the environment. These fields are dynami-
cally and intentionally generated by agents thanks to the emission of attrac-
tive and repulsive signals. Agents broadcast such signals in order to influence
their close neighbors. Repulsive signals express constraints/conflicts between
agents (expression of a part of the whole problem) and positive signals ex-
press cooperative calling. Fig. 2 shows the application of the model to the
foraging task. Over the working area a surface is drawn to represent the
enhanced environment (i.e. obstacles plus signals). Cooperative signals are
represented as hollows and repulsive signals as peaks (the latter ones are
added to fields generated by obstacles). These artificial fields augment the
information present in the environment in order to express agent goals and
constraints. The next steps show that agents are designed to reduce these
artificial perturbations.

2. To cooperate and to solve conflicts, agents must be able to perceive the sig-
nals and the presence of other agents. The key idea of the model is that agents

An Environment-Based Methodology to Design Reactive MAS 41

Fig. 2. Application of the satisfaction-altruism model to the foraging task (snapshot
simulation step 497). On top, representation of attractive and repulsive signals as
environment distortions (= the environment perceived by agents).

evolve in the perceptual environment drawn in Fig. 2. So agent perceptions
are limited to the detection of physical obstacles and to the reception of
attractive and repulsive signals.

3. Interactions consist of agents carrying out cooperative reactions to signal
reception. One interesting application of this model is the distributed reso-
lution of access conflicts in constrained environments (several robots/agents
trying to navigate in narrow passages, as represented in Fig. 3.a). In this
problem there are two kinds of constraints: the presence of static obstacles
and other agents (which are moving obstacles).
– (a) Individual level : the perception of local obstacles is used as stimulus

to avoid them (a simple avoidance behavior is defined).
– (b) Cooperative level : If several agents are blocked, i.e. a deadlock due

to the environment’s topology (cf. Fig. 3.a), simple avoidance behavior
will be inefficient. A cooperative mechanism, based on the emission of
repulsive signals, is then added. Agents measure their local constraints,
i.e. elements surrounding them, to broadcast a level of dissatisfaction
(agents and walls do not have the same weight, see [35]). The cooperative

42 O. Simonin and F. Gechter

a b

Fig. 3. Snapshots of simulated individual robots based on the satisfaction-altruism
model. Example of conflict resolution. Each robot is represented by its range of per-
ception, id number, current satisfaction and possible emitted signal value.

reaction, which is called altruism, forces the less dissatisfied agents to
move away in order to unlock the situation. Thanks to this mechanism,
signals are propagated to all agents involved in the blocking. Fig. 3.a
shows an example of a column of blocked agents where the less dissatis-
fied ones are at the top.

– (c) Regulations : Signal propagation can lead to oscillatory and cyclic
behaviors (as in the eco-resolution model). To avoid oscillations, the
notion of persistence is added to the emission of repulsive signals: a
blocked agent emits its initial dissatisfaction while it is not totally free
(see agent number 5 in Fig. 3.b). This behavior illustrates the necessity
of regulation mechanisms in cooperative processes.

4. The observed solution is equilibrium between the problem dynamics and
agent interactions. For the navigation application, the solution is charac-
terized by coherent displacements of all the agents (note that immobilized
agents express a conflicting situation). For conflicts involving several agents,
repulsive signals are passed from agent to agent. As a consequence, we ob-
serve the emergence of groups of agents moving in the same direction as a
coherent entity (see details in [24]). It is the case in Fig. 3.b for the two
robots freeing from the conflict, noted emergent group.

This model has been applied to different simulated problems such as collab-
orative foraging [36], navigation in constrained environments, box-pushing [12]
and validated with real robots in conflict problem solving [24].

4.2 A Physics-Based Reactive Model

Localization, with mobile or fixed sensors, is a very difficult but required task
to control mobile robots in an indoor dynamic and uncertain environment. This
task can be defined as finding the position of an object, mobile or not, in a
well known referential. The localization is composed of two methods: localization

An Environment-Based Methodology to Design Reactive MAS 43

with on board sensors (also called self localization) and localization with external
sensors. The algorithms used generally stem from signal or image processing, or
from the stochastic methods based on Markov Decision Processes (MDP) [16].
So, the standard localization algorithms are extremely dependent on the nature
of the used sensors and deal only with one single target. There are no multi-agent
based localization and tracking devices except with specialized cognitive agents
[11]. Some related work, such as environment mapping and data fusion deals
also with cognitive agent-based methods. In this way, tracking is considered to
be a collection of temporally and spatially coherent localizations. As a means of
localization, the tracking algorithms stem from the signal processing. Among the
most spread out we can point out the Kalman filter, the optical flow algorithms
and the particle filtering [23]. The main difficulty in designing such systems for
localization and tracking is to take into account the characteristics of the used
sensors while obtaining properties such as robustness and adaptation to the
variation in the targets’ kinetics. Considering these required properties, using a
reactive multi-agent system to solve this problem seems to be adapted.

Before detailing the physics based model following the methodology exposed
in Sect.3, a description of the problem is required. For this, both the topological
and the dynamic point of view have to be considered.

Localization and tracking are based on the use of sensors that are spread out
in the environment. The topology of the problem is tied to the gathering range
of the sensors. This can be considered as an area, observable by the sensors,
where the targets are expected to move. The dynamics of the problem depend
on the dynamics of the targets.

These can (i) appear, i.e. they arrive in the observation field of the sensors,
(ii) move, i.e. they go from one observable point of the real world to another
observable point, (iii) disappear, i.e. they go out of the observation field.

With this description in mind, the constraints of the problem can be formal-
ized. The topology has to take into account the range of each sensor and the
topology (obstacles, walls, doors, ...) of the observed area. The dynamics of
the problem have to take into account those of the targets. The structure of the
model is shown in Fig. 4. From here, the proposed methodology can be applied.

1. To start with, an environment model has to be defined in order to repre-
sent the problem and its constraints. For the localization and the tracking,
the chosen representation is an occupancy grid that represents the areas of
the real world observable according to the range of the sensors. The obsta-
cles are labeled as unreachable areas of the grid. As for the dynamics, these
have been translated into two main trends. First, accumulation of the sens-
ing information deals with the appearance of the targets. This accumulation
leads to the construction of a plot that represents a possible position for a
target. This construction can be considered as a deformation of the environ-
ment that has to be perceived by the agents. Second, evaporation of the plot
has been designed. This deals with the disappearance of the targets. It also
prevents the persistence of bad information in the environment. This evapo-
ration tends to reduce the deformation involved in the accumulation. These

44 O. Simonin and F. Gechter

Fig. 4. Architecture of the Physics based reactive model for the localization and the
tracking

two trends take into account the targets’ movements. The movement of a
target to a place near its last position can be considered as the appearance
of this target in a place near from its last position. Since the evaporation
tends to reduce the out-dated plots, this last position will disappear.

2. Then, the perceptions of the agents have to be defined. Without any infor-
mation the agents’ environment is flat. The deformation of the environment,
induced by the accumulation, can be considered as a perturbation. This
Physics based model has been designed for the perception of this kind of
perturbation. The agents perceive the plots through the environment by
means of an attraction force. This force is induced by the appearance of a
plot and depends on its size. Thus, the agents are mass particles in a force
field.

3. As for the interaction mechanisms, they have to be defined considering in-
dividual and collective levels and the required regulation.
(a) Individual level : The agents are expected to compensate the perturba-

tions in the environment. Since they are already attracted by the plots,
a behavior has to be designed to reduce the plot when the agents are on
it. So, a consumption behavior has been introduced.

(b) Cooperative level : Two situations have to be considered. The first char-
acterizes the system in its stable initial state (i.e. when there is no in-
formation given by the sensors). In this case, the agents have to be as
far as possible from each other in order to better prevent the arrival of
information. So, a repulsion behavior has been defined. This behavior is

An Environment-Based Methodology to Design Reactive MAS 45

based on a Model inspired by Physics as the attraction is. In the second
case, the agents have to deal with the information that deforms their
environment. If the agents are expected to cooperate in the consump-
tion of the information, they must be allowed to be near each other.
So the repulsion mechanism is inhibited when the agents are consum-
ing considering their respective potential energy. This value is computed
considering the level of the plot where the agent is.

(c) Collective and local regulation: As it has been defined, the environment
is physically coherent (i.e. all the behaviors have been defined following
mathematical formulations based on Newtonian Physics). Nevertheless,
it is still conservative since the speed of an object moving in the environ-
ment, without any interaction, remains constant. Consequently, a fluid
friction force has been introduced in order to regulate the movements of
the agents.

4. Then, the emerging collective organization has to be observed. This is both a
gathering of the agents on the percepts, which leads to a group construction,
and a homogenous repartition of them in the information less areas. Each
group can thus be considered as a localized target. The output of the system
is stable when equilibrium is established between the refreshing and the
resolution dynamics. Fig.5 shows of the localization and tracking solving
process using the automatic control point of view applied in the proposed
methodology.

From an application point of view, this device has been successfully applied
in simulation and with real targets. It shows relevant properties compared to
classical localization and tracking algorithms such as anticipation of the tar-
gets’ moves, independence from the number of information sources (information
sources can be added and/or remove in run time), independence from the number
of targets,... (see [18] or [17] for detailed results).

Fig. 5. Representation of the solving process as a filter

46 O. Simonin and F. Gechter

5 Conclusion

This paper presents an environment-based methodology for building reactive
multi-agent systems aimed at dealing with the problem solving issue. Consider-
ing the limitation of simple entities, the environment appeared to be the main
element involved in a reactive-based solving problem system. First, it models
the problem to solve and its constraints. Second it establishes the link between
the problem on one side and the reactive solving process on the other. Finally,
in some cases, it can also characterize the emergent organization.

Our approach contrasts with classical emergentist or artificial life works that
define agents and interactions by following the expected emergent organization.
Our proposition can be seen as a bottom-up methodology based on the repre-
sentation of the problem, where constraints are translated into perturbations
in the environment. These have to be regulated through agent behaviors. The
originality of our methodology is the fact of starting the building of the solving
system by focusing on the environment instead of focusing on the agents, their
knowledge and their behaviors as it is done in the classical approach.

The fourth step of the methodology claims that the global solution emerges
from the solving process and can be characterized when the system reaches a
stable state. Such a state must be measured or observed by an external agent.
It is a complex task that remains an open problem. However, we propose in
Sect.3.2 some clues about the characterization of this stable state.

Two detailed examples illustrate the application of the methodology: (i) a
generic kernel for cooperation and conflict solving between situated agents, which
is based on an extension of the APF approach (ii) a model for localization and
target tracking using a Physics based approach. It appears to us that describing
these models following the construction steps is a good way for their presenta-
tion/understanding.

The proposed methodology is currently applied to features extraction in im-
age processing by using agent based active shapes that respect the B-Spline
formalism. The methodology is also applied to the facilities location issue. On
the theoretical level, we plan to develop some keys for the definition of the en-
vironment model as expressed in the first point of the methodology.

Acknowledgments

The authors would like to cordially thank Anna Crowley for the correction of
the English writing of the paper.

References

1. Arkin R.C.: Behavior Based Robotics. The MIT Press (1998)
2. Balch T.: Hierarchic Social Entropy: An Information Theoretic Measure of Robot

Group Diversity. Atonomous Robots, vol.8, n◦3, July (2000)

An Environment-Based Methodology to Design Reactive MAS 47

3. Bernon C., Gleizes M-P., Peyruqueou S., Picard G.: ADELFE, a methodology for
adaptative multi-agent systems engineering. in Third International Workshop on
Engineering Societies in the Agent World (ESAW-2002), Madrid, sept (2002)

4. Bonabeau E., Dorigo M., Theraulaz G.: Swarm Intelligence: From Nature to Arti-
ficial Systems. New York, Oxford University Press (1999)

5. Buffet O., Dutech A., Charpillet F.: Adaptive Combination of Behaviors in an
Agent. Proceedings of the Fiveteenth European Conference on Artificial Intelli-
gence (ECAI’02), .48-52, Lyon, France, (2002)

6. Camazine S., Deneubourg J.L., Franks N.R., Sneyd J., Theraulaz G., Bonabeau E.:
Self-Organization in Biological Systems. Princeton studies in complexity, Princeton
University Press (2001)

7. Colorni A., Dorigo M., Maniezzo V.: Distributed Optimization by Ant Colonies.
in proceedings of ECAL91, European conference on artificial life, Paris, Elsevier,
p 134-142 (1991)

8. Drogoul A., Ferber J., Jacopin E.: Pengi: Applying Eco-Problem-Solving for Be-
havior Modelling in an Abstract Eco-System. in Modelling and Simulation: Pro-
ceedings of ESM’91, Simulation Councils, Copenhague, 337-342 (1991)

9. Drogoul A., Ferber J.: From Tom-Thumb to the Dockers: Some Experiments with
Foraging Robots. in From Animals to Animats II, MIT Press, Cambridge, 451-459,
(1993)

10. Drogoul A., Dubreuil C.: A Distributed Approach to N-Puzzle Solving. Proceedings
of the Distributed Artificial Intelligence Workshop, Seattle (United-States) (1993)

11. Ealet F., Collin B., Sella G., Garbay C.: Multi-agent architecture for scene inter-
pretation. SPIE’00 on Enhanced and synthetic vision, Orlando, USA, (2000)

12. Chapelle J, Simonin O, Ferber J.: How Situated Agents can Learn to Cooperate
by Monitoring their Neighbors’ Satisfaction. Proc. 15th European Conference on
Artificial Intelligence, 68-72 (2002)

13. Ferber J., Jacopin E.: The framework of ECO-problem solving. in Decentralized
AI 2, North-Holland, Yves Demazeau and Jean-Pierre Müller Eds. (1991)

14. Ferber J.: Multi-Agent System: An Introduction to Distributed Artificial Intelli-
gence. Harlow: Addison Wesley Longman (1999)

15. Ferrand N., Demazeau Y., Baeijs C.: Systèmes multi-agents réactifs pour la
résolution de problèmes spatialisés. Revue d‘Intelligence Artificielle, Numéro
Spécial sur l‘IAD et les SMA, 12(1):37-72, january, (1998)

16. Gechter F., Charpillet F.: Vision Based Localisation for a Mobile Robot. In 12th
IEEE International Conference on Tools with Artificial Intelligence ICTAI’2000.
229-236 (2000)

17. Gechter F., Chevrier V., Charpillet F.: A Reactive Multi-Agent System for Local-
ization and Tracking in Mobile. In 16th IEEE International Conference on Tools
with Artificial Intelligence - ICTAI’2004, 431-435 (2004)

18. Gechter F., Chevrier V., Charpillet F.: Localizing and Tracking Targets with a
Reactive Multi-Agent System. In Second European Workshop on Multi-Agent Sys-
tems - EUMAS’04 (2004)

19. Hull C.: Principles of Behavior. New York: Appleton-Century-Crofts, (1943)
20. Kanada Y., Hirokawa M.: Stochastic Problem Solving by Local Computation based

on Self-Organization Paradigm. IEEE 27th Hawaii International Conference on
System Sciences, 82-91 (1994)

21. Kennedy J., Eberhart R.C.: Swarm Intelligence. Morgan Kaufmann Publisher 2001
ISBN 1-55860-595-9 (2001)

48 O. Simonin and F. Gechter

22. Khatib O.: Real-Time Obstacle Avoidance for Manipulators and Mobile Robots.
Proceedings of IEEE International Conference on Robotics and Automation, 500-
505 (1985)

23. Kwok C., Fox D., Meila M.: Real-Time Particle Filters. Proceedings of the IEEE,
92(2),Special Issue on Sequential State Estimation (2004)

24. Lucidarme P, Simonin O, Liegeois A.: Implementation and Evaluation of a Sat-
isfaction/Altruism Based Architecture for Multi-Robot Systems. Proc. IEEE Int.
Conf. on Robotics and Automation, 1007-1012 (2002)

25. Mamei M. , Zambonelli F.: Motion Coordination in the Quake 3 Arena Environ-
ment: a Field-based Approach, International Workshop on Environments for Multi-
agent Systems Postproceedings of the Workshop on Environments for Multi-agent
Systems (E4MAS 2004), Springer, LNAI 3374 264-278 (2005)

26. Mamei M., Zambonelli F. Programming stigmergic coordination with the TOTA
middleware Proceedings of the fourth international joint conference on Au-
tonomous agents and multiagent systems ACM Press New York, 415-422 (2005)

27. Mataric M. J.: Designing and Understanding Adaptative Group Behavior. Adap-
tive Behavior 4:1, 51-80 (1995)

28. Müller J-P., Parunak H.V.D.: Multi-Agent systems and manufacturing.
IFAC/INCOM’98, Nancy/Metz (1998)

29. M.R.Jean: Emergence et SMA. 5eme Journées Francophones sur l’Intelligence Arti-
ficielle Distribuée et les Systèmes Multi-Agents, AFCET, AFIA, La Colle-sur-Loup,
Quinqueton, Thomas, Trousse (eds), 323-342 (1997)

30. Padgham L., Winikoff, M.: Promotheus : A Methodology for Developing Intelligent
Agents. 3th Agent-Oriented Software Engineering Workshop, Bologna (2002).

31. Parunak H.V.D.: Go to the Ant: Engineering Principles from Natural Agent Sys-
tems. Annals of Operations Research 75, 69-101 (1997)

32. Parunak H.V.D., Brueckner S.: Entropy and Self-Organization in Multi-Agent Sys-
tems. Fifth International Conference on Autonomous Agents, 124-130 (2001)

33. Parunak H.V.D. , Brueckner S., Sauter J.: Digital Pheromones for Coordination of
Unmanned Vehicles. Postproceedings of the Workshop on Environments for Multi-
agent Systems (E4MAS 2004), Springer, LNAI 3374 246-263. (2005)

34. Ramos V., Almeida F.: Artificial Ant Colonies in Digital Image Habitats. A Mass
Behaviour Effect Study on Pattern Recognition ANTS’2000, Brussels Belgique,
113-116 (2000)

35. Simonin O, Ferber J.: Modeling Self Satisfaction and Altruism to handle Action
Selection and Reactive Cooperation. in proceedings SAB 2000 The Sixth Interna-
tional Conference on the Simulation of Adaptative Behavior, vol. 2, 314-323 (2000)

36. Simonin O., Liégeois A., Rongier P.: An Architecture for Reactive Cooperation of
Mobile Distributed Robots. DARS’2000 5th International Symposium on Distrib-
uted Autonomous Robotic Systems in Distributed Autonomous Robotic Systems
4, L.E. Parker G. Bekey J. Barhen (Eds.), Springer, 35-44, (2000)

37. Simonin O.: Construction of Numerical Potential Fields with Reactive Agents.
in AAMAS’05 proceedings The Fourth International Joint Conference on Au-
tonomous Agents and Multi Agent System, ACM-SIGART, 1351-1352 (2005)

38. Steels L.: Cooperation between distributed agents through self-organization. in
Workshop on Multi-Agent Cooperation, 3-13, North Holland, Cambridge, UK
(1989)

39. Weiner, N.: Cybernetics, or Control and Communication in Animals and Machines.
Wiley,New York (1948)

An Environment-Based Methodology to Design Reactive MAS 49

40. Welch G., Bishop G.: An introduction to the kalman filter. Technical Report TR
95-041, Computer Science, University of North California at Chapel Hill, Chapel
Hill, NC (2003)

41. Weyns D., Steegmans E., Holvoet T.: Towards Active Perception In Situated Multi-
Agent Systems Applied Artificial Intelligence 18(9-10) 867-883 (2004)

42. Weyns D., Parunak V., Michel F., Holvoet T., Ferber J.: Environments for Mul-
tiagent Systems, State of the art and research challenges Post-proceedings of the
first International Workshop on Environments for Multiagent Systems, LNAI vol
3374 (2005)

43. Wooldridge M., Jennings N.R., Kinny D.: The Gaia Methodology for Agent-
Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems, 3,
Kluwer Academic Publisher, 285-312 (2000)

44. Zambonelli F., Jennings N.R., Wooldridge M.: Developing multiagent systems: The
Gaia Methodology. Transactions on Software Engineering and Methodology, 3(12),
ACM Press (2003)

An Architecture for MAS Simulation
Environments

Renee Steiner, Gary Leask, and Rym Z. Mili�

The University of Texas at Dallas,
Department of Computer Science,

Box 830688, Richardson, TX 75083-0688, USA
rsteiner@utdallas.edu, gary.leask@student.utdallas.edu,

rmili@utdallas.edu

Abstract. In this paper, we discuss the model of an environment for a
geographically based simulation system. The environment is structured
as a graph in which nodes represent locations and edges represent paths
between locations. The space is decomposed into a network of cells which
are managed by cell controllers. In order to visualize location informa-
tion at various levels of abstraction, we define the environment as a cell
hierarchy.

1 Introduction

In MAS development, it is common for designers to couple agents and envi-
ronment. Agents are embedded in their environment, and the environment is
merely considered in terms of the agents it supports. Hence, one cannot sepa-
rate the two entities without crippling or destroying both. In addition, passive
entities, which are neither agent nor environment, are often embedded in agent
architectures. Linking the passive entities with agents causes limitations in the
extensibility of MAS architectures. Moreover, it is common for environments
to play the role of Message transport facilitators [1] whose responsibilities cen-
ters around the communications between agents through a message transport
service or a broker infrastructure. The communication can be direct [2, 9], or
indirect [10, 17]. Our work is based on the idea that, by separating the agent
from its environmental responsibilities, both the environment and the agent are
more robust and adaptable. Such a clear separation of duties and responsibil-
ities leads to a reduction in unnecessary coupling and a more understandable,
extensible, reusable architecture. New multi-agent simulation tools make use of
this principle [18,19].

Conversely, we subscribe to the idea that agents and environment play an
equally important role, and propose a definition for Agent-Environment Sys-
tems (AES). The AES concept is particularly useful when a) the environment
is dynamic and distributed, b) the environment includes entities that are not
agents, and c) agents cannot have a complete view of the environment at any
� Correspondence author.

D. Weyns, H. Van Dyke Parunak, and F. Michel (Eds.): E4MAS 2005, LNAI 3830, pp. 50–67, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Architecture for MAS Simulation Environments 51

Fig. 1. Geographical Simulation Environment

point in time. As such, AES are subsets of MAS and supersets of agent simula-
tion tools. We illustrate our concepts through the DIVAs environment. DIVAs
(or Dynamic Information V isualization of Agent systems) is a social simulation
tool in which the environment is a geographical map consisting of a graph whose
nodes indicate places, and whose edges represent pathways between places (see
Figure 1). DIVAs’ environment system allows the creation of environments, and
the execution of a simulation.

In section 2, we begin by defining Agent-Environment Systems (AES) and
propose a general AES architecture. In section 3, we introduce the DIVAs frame-
work and in section 4, we examine our implementation of the environment.

2 Agent-Environment Systems

In this section, we define Agent Environment Systems and discuss agent and
environment characteristics.

2.1 Definition

We define an AES as a MAS composed of

1. a set of interacting agents;
2. a distinct environment in which these agents are situated (not embedded);
3. a mechanism for agent to environment interactions.

52 R. Steiner, G. Leask, and R.Z. Mili

In an AES,

1. an agent is a software entity which
(a) is driven by a set of tendencies in the form of individual objectives;
(b) can communicate with other agents and the environment;
(c) possesses resources of its own; a resource is a consumable commodity;
(d) has a partial view of this environment;
(e) possesses the ability to perform tasks and can offer services;
(f) is mobile in an environment.

An agent’s behavior tends towards satisfying its objectives, taking into
account the resources and abilities available to it, and depending on its
perception and the communications it receives [20].

2. an environment is a software entity which
(a) is driven by a set of tendencies in the form of individual objectives;
(b) can interact with other environment entities and agents;
(c) possesses resources of its own; a resource is a consumable commodity;
(d) has a partial view of the agent population;
(e) possesses the ability to perform tasks and can offer services;
(f) includes a set of objects; objects are passive entities that are not con-

sumable but can be perceived, modified or destroyed by agents.

An environment’s behavior tends towards satisfying its objectives, taking
into account the resources and abilities available to it, and depending on its
perception, interactions and events it receives.

It is important to note that the ordering of these characteristics is intentionally
presented to emphasize the commonalities inherent in the agent and environ-
ment. However, even though the characteristics are similar at a high level, at
the application level they diverge.

In the following subsection, we compare and contrast the characteristics ex-
hibited by agents and environments using an embodiment of an AES.

2.2 Example

DIVAs is a geographical based simulation system which implements the AES
concepts [21, 23]. Agents represent social entities that move, act, use resources
and interact with each other (see Figure 1). Every action by every agent pro-
duces a change in the state of the environment. When the simulation involves
a few hundred thousand agents, it is impractical to model the environment as
a single component. Hence, to mitigate the processing overhead, we decompose
the environment into smaller, more manageable partitions that we call cells (see
Figure 2). In DIVAs, the environment is a graph, G in which nodes represent
locations and edges represent paths between locations. Agents move in the en-
vironment using the map specified by G (see Figure 3).

As discussed in the previous section, environment cells and agents have sim-
ilar characteristics, however, these characteristics are realized differently in an
application.

An Architecture for MAS Simulation Environments 53

Fig. 2. Environment partitioned into cells

Fig. 3. Representation of the Environment

54 R. Steiner, G. Leask, and R.Z. Mili

Fig. 4. Communication illustration for AES

1. Objectives. Both agents and environments have goals to satisfy. Agent goals
are goals in the traditional sense whereas the goal of a environment’s cell
is to maintain a stable state for the situated agents. For example, a cell’s
goal might be to recover a path in the shortest period of time following the
occurrence of an external event that simulates a natural phenomenon. If a
path is unusable following a flood event, the cell makes every effort to recover
a near approximation to the original path in the shortest time.

2. Communication and Interaction. Both agents and environments communi-
cate. We distinguish between three types of communications: agent to agent,
cell to cell, and agent to cell (see Figure 4).

– Cell to cell communication. This type of communication centers around
exchanging information that may affect the state of another cell. For
example, if two adjacent cells c1 and c2 share a path, and c1 receives an
external event to remove the path, c1 will act on its portion of the path
and propagate the information to c2.

– Agent to cell communication. Agents communicate with cells to obtain a
vision of their immediate surroundings as well as to inform the cell of a
state change incurred by them. For example, as an agent enters a cell, it
passes its business card to the cell. The agent’s business card symbolizes
the minimal amount of information needed by the environment. This
includes the agent’s id, position, etc.

– Cell to agent communication. Cells communicate with agents to impart
changes to the state of the cell that may affect an agent’s plan. For
example, if a path is removed from a cell’s graph, the agents within the
cell are informed so that they may replan their trip if necessary.

An Architecture for MAS Simulation Environments 55

3. Resources. Both cells and agents possess resources. A cell’s resource aids its
survival (air, water, sun, etc), while an agent’s resource aids the fulfillment
of its tasks (money, time, hammer, etc.).

4. Partial View. Cells have a partial view of the agent population and agents
have a partial view of the environment. A cell is aware only of those agents
within the cell’s boundaries; there is no need to know about agents that
cannot affect its state. An agent is only aware of the state of the cell in
which it is situated; there is no need to know about cells that it cannot see.

5. Tasks and Services. Both cells and agents can perform tasks and offer ser-
vices. A cell’s tasks are completed in the process of maintaining a stable
state. For example, the environment has the ability to perform the task of
repairing a path. Once repaired, the cell offers notification services commu-
nicating the state changes to all affected cells and agents. An agent’s tasks
entirely are dependent on its goal for a specific application and agent ser-
vices are likewise application-centric (ie. they vary based on the needs of the
application and its specific implementation).

Therefore, it can be concluded that an agent and an environment cell possess
many of the same qualities even though they realize those qualities in different
manners. As such, an environment can be considered a first class entity. Hence,
having developed a basic understanding for AES, in the following section we
discuss the details of the DIVAs architecture.

3 DIVAs Architecture

DIVAs [21]consists of four main components (see Figure 5). The AES component
creates the environment and populates it with agents; the Data Management
System extracts information about emergent structures through data mining and
clustering techniques. The Visualization System uses graph drawing algorithms
to visualize the dynamics of a large number of agents; the Prediction System
generates prediction models when data is sparse or incomplete.

As discussed in the previous section, the environment is partitioned into a
network of cells where each cell is a single environment entity. A cell ci,j is related
to cell ci,j+1 if ci,j and ci,j+1 share nodes or paths. Cell information is managed
by individual controllers. A cell controller is responsible for informing its local
agents about changes in the location graph, hence providing them with a vision
of their surroundings. It is also responsible for informing neighboring cells of any
changes that may affect them.

In addition, because we are interested in visualizing location information at
various levels of abstraction, the environment is defined as a hierarchy. The
information contained in cells and location graphs is refined as the level of
granularity increases. Hence, in order to manage the environment as a whole,
each cell has to manage its connections with the cells it is linked to at the
same level (i.e., horizontally), as well as at the upper and lower levels (i.e.,
vertically).

56 R. Steiner, G. Leask, and R.Z. Mili

DIVAs Agent Environment System

System
Management

Visualization Framework

Data Management System

Environment
Management

System

Agent 1 Agent n

Publisher/Subscriber Messaging Service

Cell 1 Cell 1

Env−Env Message
Transport ServiceTransport Service

Agent−Agent Message

. . .

2D Location Graph

. . .

Prediction System

Agent

Agent − Environment Message Transport Service

Fig. 5. DIVAs Architecture

Acquaintance Model

Environment Model

Planning and Control Module

Task Schema

Internal Information Module

Self ModelControl
PCM − Execution

PCM − Planning

Communication Module

Agent

Interaction Management Modules

Perception Module

Constraints Model

Environment

PCM

Extermal Information Module

Information Management Module

Task Management Module

Fig. 6. DIVAs Agent Architecture

As alluded to in section 2.1, DIVAs’ cell structure is very similar to the agent’s
structure (see Figure 6). The cell includes four main components [24,23]: the
Interaction Management Module, the Information Management Module, the Task
Management Model, and the Planning and Control Module. These modules are
shown in Figure 7. In the following section, we will elaborate upon these modules
by first discussing their purpose followed by a brief description of the implemen-
tation as shown in, Figure 8, the class diagram.

An Architecture for MAS Simulation Environments 57

...

Cell

Information Management

Module

Control ModulePlanning and

Task Management Module

Communication Model

Synchronizer

Communication
Environment

Model

Environment toEnvironment to Agent

Object Model

Agent Model

Graph Model

Linked Cell Model

Self Model

Interaction Management Module

Task nTask 1

Fig. 7. Environment Architecture

Fig. 8. DIVAs Environment Design Data Model

3.1 Planning and Control Module (PCM)

Description. This module is the “brains” of the environment. It maintains
interfaces to all the other modules and is responsible for the planning, task
execution, monitoring and decision making. It is responsible for determining the
next course of action (i.e., new cell state). As such, its main responsibility is to

58 R. Steiner, G. Leask, and R.Z. Mili

satisfy its goal of maintaining a stable state. It should make no decisions that
compromise, or are in conflict with, that goal.

The PCM is responsible for determining what a “stable state” is. When the
environment is initialized, its initial state is set and the Information Manage-
ment Module is populated. This initialization is an external event (and the first
such event) on the environment. From this point on, the PCM has a goal of
maintaining that state.

Implementation. The main class of this module is the CellController. The Cell-
Controller has access to the external information via a facade implemented by
the InformationManagementModule. The CellController also holds a reference to
the InfluenceModel which is part of the Environment to Agent Communication
Module. In this way, it is able to receive influences via a callback mechanism. The
callback is handled in the CellController with the envEvent(event) method which
is called by the InfluenceModel. When the CellController has any environment
events that it wishes to propagate, it calls the InfluenceModel’s producePercep-
tion() method.

3.2 Interaction Management Module

The Interaction Management Module is responsible for handling environment-
to-environment and environment-to-agent communications, expressed in KQML,
which is delivered by the Message Transport Service (MTS). This module is
subdivided into the Environment to Environment Communication Model, the
Environment to Agent Communication Model and the Synchronizer.

The Environment to Environment Communication Module (EE-CM).
This module is responsible for the environment-to-environment communications.
Since processing for these events occur in a asynchronous manner, there is no
need to involve a synchronizing mechanism.

The Environment to Agent Communication Model (EA-CM). This
model is responsible for handling the environment-to-agent interactions. It pro-
duces influences caused by events within the environment. Internal events are
generated as a result of activities being performed by the agents or the environ-
ment. External events are triggered by the system user. Once triggered, events
cause influences in the environment and these influences will cause a reaction, or
a change in state, by the environment. Influences carry content to the interested
agent(s).

This module receives EventInfo messages from the agents and forwards them
to the PCM. It also receives the EnvInfo message from the PCM and forwards
it to the agent to be received as perceptions. It interfaces with the Synchronizer
by receiving SyncReaction messages and sending EndOfReaction messages back
to the Synchronizer.

Implementation. This model is composed of several classes foremost of which
is the InfluenceModel class. It holds references to the Synchronizer Model, as

An Architecture for MAS Simulation Environments 59

well as an indirect reference to the CellController in the form of a callback
method. Since the Controller has an instance of the InfuenceModel, it is able
to directly send the EnvInfo message to the InfluenceModel which will then
format the perception for the agent and send an EnvInfo message to the agent.
The InfluenceModel will also receive EventInfo messages from the agent which
it will then pass to the CellController via the callback mechanism using the
EnvironmentEvent class. Likewise, the InfluenceModel receives a callback in the
form of an InfluenceEvent from the HeartbeatPublisher when a SyncReaction
message triggers in the HeartbeatPublisher. In these ways, it is able to send and
receive all messaging for events.

Synchronizer. This component implements mechanisms to synchronize the
processing of the agents perception of the cell with their actions since commu-
nication from the agents occurs in an asynchronous manner while processing
must be synchronous. It enables agents’ perception of the environment and the
environment’s reaction to influences generated by agents’ actions, to occur at a
specified rate and time.

Implementation. This module is implemented following a publish/subscribe
pattern using the Java Messaging Service which allows the asynchronous mes-
saging that agent-environment communications require. All an agent needs to
do upon entering the cell is register for that cell’s events. Several classes make
up the Synchronizer Module. HeartbeatPublisher is the class that is responsible
for pulsing out events. Events, not content, are transmitted by the synchronizer
module. The HeartbeatPublisher is responsible for receiving EndOfAction events
from agents and passing those to the InfluenceModel in the form of a SyncRe-
action message via a callback mechanism. Once the InfluenceModel has finished
responding to the agent’s action, it sends a EndOfReaction event to the Heart-
beatPublisher. The HeartbeatPublisher then fires an SyncPercept event to all
agents in the cell.

3.3 Information Management Module

Description. The Information Management Module (IMM) manages the min-
imal data a cell needs to function. Since a cell may be subjected to several
external events, and may contain a large number of agents at any point in time,
it is necessary to not overload it with unnecessary information so as to opti-
mize its processing and interaction functions. A cell is composed of the following
models:

– Agent Model. This model contains minimal information about the agents
within environment such as id and location.

– Linked Cell Model. This model contains information about the neighboring
cells to the environment such as cell id and path id of any shared paths.

– Graph Model. This model contains information regarding the nodes and edges
in the cell. This is done in order to maintain a localized mapping of the graph.
It is discussed in detail in section 4.4.

60 R. Steiner, G. Leask, and R.Z. Mili

– Self Model. This contains information regarding the characteristics of the
environment such as the cell’s id and its boundaries. It also includes infor-
mation about the resources available for the cell. A resource is a commodity
(e.g., time, energy) that is used during the execution of tasks.

– Object Model. This includes information detailing the Physical Objects that
are situated in the environment including id, position and description.

Implementation. The CellController instantiates a list of AgentModels, the
GraphModel of the cell and a list of LinkedCellModels. It also instantiates the
SelfModel and a list of all ObjectModels in the environment.

3.4 Task Management Module

Description. This contains information regarding tasks that can be performed
by the environment. This serves as a “database” containing the detailed descrip-
tion of each atomic level task, or operation, that the environment is capable of
performing.

Implementation. The CellController has an instance of the TaskManagement-
Module. It provides all the information that the PCM needs to schedule activi-
ties. It contains the currentTask as well as an array of possible tasks.

3.5 Event Handling

Having discussed the modules that make up the core of the environment frame-
work, we will illustrate the key interactions that environments handle. There
are three types of events in DIVAs: Environment↔Environment, Environment
↔Agent, and External. Each event type has its own characteristics and, by ne-
cessity, must be handled differently by the cell.

External events, generated by the user, are unidirectional and include, but
are not limited to, objectAdded, objectMoved, objectRemoved, pathAdded, pathRe-
moved, locationNodeAdded, and locationNodeRemoved.

Environment↔Agent events are bidirectional and include influences and
perceptions. Influences may include welcomeToCell, objectAdded, objectMoved,
objectRemoved, pathAdded, pathRemoved, locationNodeAdded, and locationNode-
Removed. Perceptions may include enteredCell, exitedCell, objectAcquired,
objectReleased, agentMoved,

Environment↔Environment events are bidirectional and include, but are not
limited to, pathAdded and pathRemoved.

4 Creating and Managing DIVAs Environment

In this section, we discuss the implementation of version 1.2 of DIVAs environ-
ment [25].

An Architecture for MAS Simulation Environments 61

4.1 Cell and Level Specification

The DIVAs Environment allows the user to pre-configure the levels of abstraction
that can be viewed in the visual space. The Environment can be configured to
view multiple levels of increasing detail. Each level is configured as a grid. The
grid is defined by a longitude and a latitude or the number of increments along
the x and y axis. The longitude and latitude are further divided into a smaller
cell divisions producing the grid displayed to the user.

Each level of abstraction is built on the cells defined in the previous level.
For example, if a level is defined to have a longitude of 100 and a latitude of 100
with a cell division of 10. The grid would display as a square with division lines
every 10 degrees. The next level then must be defined in terms of the previous.
Therefore, the next level must have a longitude 10 and a latitude of 10. It can
then select it owns subdivision of these dimensions for the new visual space
(See Figure 9). The relation between the neighboring abstractions is necessary,
because when the user selects to view a specific cell at a specific abstract level,
the new visualization needs to reflect the area chosen.

4.2 Creating the Graph

The DIVAs Environment implementation is an embodiment of a Graph Model.
The Environment Management System (EMS) provides an interface between
external events and the Environment Management Module (EMM). The Envi-
ronment supplies a User Interface (UI) to seed or initialize the Environment.
Once locations have been added through the UI or a configuration element, they
can be viewed in the environment on the visual plane.

A user can add additional locations and connections between the locations to
initialize the environment as needs arise. Locations are the nodes of the graph.
They indicate places or destinations, within the environment. The nodes are
specified using longitude and latitude positions. It is important to note that a
node belongs to only one cell. For example, a node at an intersection of, 95.0
longitude and 30.0 latitude is contained in the cell defined by 95 to 94.00000001
west longitude and 30.0 30.999999 north latitude. The relationships that connect
nodes together form the arcs in the graph. These connections may represent
paths along which agents can travel between locations.

The UI for the environment aids in plotting the locations at longitude and lat-
itude positions. The references between the locations can be established between
the nodes through the user interface as well. The DIVAs system uses a 2D graph
model to represent the Environment. The complete environment is constructed
from grouping the nodes of each of cells into a cell Graph Model. The graph plots
the nodes and represents the connections as lines between the nodes, creating
the graph. The graph is then plotted onto the environment visualization.

The user interface provides a means to list the locations of nodes and their
connections. The UI also provides the ability to add new nodes and connec-
tions between new nodes and/or existing nodes. The connections can also be
manipulate by adding new connections or removing current ones.

62 R. Steiner, G. Leask, and R.Z. Mili

F
ig

.9
.
T
oo

l
ill

us
tr

at
in

g
en

vi
ro

nm
en

t
at

th
re

e
la

ye
rs

of
ab

st
ra

ct
io

n

An Architecture for MAS Simulation Environments 63

4.3 Managing the Environment

The process of adding a new node to the Environment involves the UI notifying
the Environment Management System that a change has occurred or, specifically,
a node had been added. The system, using the Environment Message Transport
Service (EMTS), a publish/subscribe messaging service, broadcasts a message
to the Environment Management Module, which in this case is the Graph Man-
agement Module (GMM) - a 2D management system for the graph model. The
Graph Management Module maintains a list of the active cell controllers. When
it receives a message that a node is to be added, the Graph Management Mod-
ule determines if there is already an active cell controller for the location of the
node. If there is an active controller, the exact position of the node is sent to the
cell controller to update it’s Graph Model. If there is no active cell controller for
the node’s location, a new cell controller is created and added to the GMM. The
newly created cell controller is then notified of the node addition and updated.

The process of adding new connections to a node through the user interface is
similar to that of adding a node. The UI notifies the Environment Management
System that a change has occurred affecting the environment. The EMS notifies
the Graph Management Module that a request has been made to connect two
nodes together. The Graph Management Module acquires the cell controller of
the originating node and sends node connection information to the cell controller
for processing. The cell controller, using helper classes, determines the segment
of the arc that lies within its boundaries. The remaining portion of the line is
sent back to the Graph Management Module to be processed by subsequence cell
controllers. The process terminates when a cell controller determines that the
termination of the line is within its cell boundary. Each cell controller determines
the segment of the entire line that resides with in its boundaries and is respon-
sible for the management of only that portion of the line. The removal of nodes
and connections uses the same logic to update the cell controllers which are re-
sponsible for the management of the node or line segment. Once the information
has been updated in each of the cell controllers, the appropriate cell controller
then adjusts its view of the environment accordingly. This may be reflected in
the removal or addition of a line segment within the boundaries of its control.

The real power of separating the Environment Management System from
the visualization is that different types of EMMs, such as a 3D model, can be
plugged into the Environment Management System and be notified of an envi-
ronment change and act accordingly. The EMMs, can then display a different
type of visualization and various levels of abstraction for each type of Environ-
ment Model. The Graph Management Model simply groups the number of cell
controllers to be displayed and shows them at different levels of detail.

4.4 Design

The design diagram for a cell in Figure 8 illustrates the classes needed to im-
plement the functionality of the various modules included in the Environment
Module (EM) with the exception of the Env-Env Message Transport Service.

64 R. Steiner, G. Leask, and R.Z. Mili

The Environment Management System (EMS) acquires the location nodes from
a data source and, once the data has been initialized, notifies the Environment
Management Module (EMM) to create the Cell Environments Modules. The
CellController class implements the Environment Module (EM) in the DIVAs
project. The EMM or GraphManagementModel class is responsible for dividing
the environment into manageable partitions. In a world environment, this would
equate to a division along longitude and latitude demarcations. The demarcation
depends on the granularity with which the user wants to visualize the world.

The CellController is coupled with the Information Management Module
(IMM) for state maintenance. Thus, the CellController contains references to
the following classes: SelfModel, AgentModel, and a concrete ObjectModel rep-
resenting the Passive Entity Model. It also aggregates the LinkedCellModel as
well as the GraphModel.

The AgentModel monitors the minimal information about agents within the
cell, such as its last known location. It also broadcasts to the Synchronizer when
the agent leaves the cell. The GraphModel class describes paths available in
the environment. The GraphModel consists of nodes and edges connecting the
nodes. A LocationNode describes a physical location in the two-dimensional
environment denoted by an x and y component. In the broad sense, edges link two
nodes together. In the small, however, an edge can span many cells. Therefore,
a conceptual physical edge is divided in to path segments that are controlled by
the individual CellControllers through which it passes. Thus, the instantiation of
the PathSegment class can be one of three different varieties; a source segment, a
sink segment or a line segment. A source segment is a PathSegment that has its
origin within the cell (this assumes that the edges are directional or at least have
an initiator of the line indicating direction such as a line of communication). A
sink segment is a PathSegment that has its destination within the cell. A line
segment is a PathSegment that either passes completely through the controller,
in which case the cell considers the end points to be on the cell boundaries, or
the PathSegment begins and ends within the cell. The PathSegment is defined
by its origin (x; y; cellid) and its destination (x1; y1; cellid). The cellids are
identifiers of the linked cells from which the link entered or exits. If the line
segment is completely contained within the cell, then both ids reference the
cell’s SelfModel. The LinkedCellModel class associates the controller with its
neighboring cells. There are, at most, eight neighboring cells and, depending
upon location in the cell network, there are as few as three.

The ObjectModel serves the same purpose as the AgentModel but its fo-
cus is on monitoring objects (passive entities). The SelfModel class describes
the identification of the controller. It contains a unique identifier as well as a
parameterized boundary constraining its height and width.

5 Conclusion

In this paper, we have defined the concept of Agent-Environment Systems (AES),
proposed that agents and environments have much in common, and presented a

An Architecture for MAS Simulation Environments 65

highly flexible and adaptable architecture for AES realized by DIVAs. Through
examination of DIVAs, we established the environment as a legitimate, first-class
entity whose responsibility is to maintain a stable state in which agents exist.

To demonstrate our concepts of AES, we have implemented all environment
functionality using Java. In its current version, DIVAs allows the creation of a
geographical world and the partitioning of that world into cells governed by their
controller. The current functionality also includes the creation of the graph of
cities and streets that maps onto the geography, as well as the implementation of
algorithms which process external events injected into the environment. We have
populated the world with agents, who mimic people, who interact with each other
and the environment to preform basic functions while attempting to complete
their goals. Through our 2D visualization, using the environment perspective,
we can monitor people as they move from city to city. We can observe these
people at a high, course-grained level, as if viewing the world’s activities or, by
opening new levels of visual abstraction, we can observe them at the finest grain
as they walk the streets.

Several definitions of environments at various conceptual levels exist in the
literature. Weyns et al. [1] propose a classification of environments in three ma-
jor categories: inter-agent facilities, agent-environment interaction, and envi-
ronments in agent oriented methodologies. Our work falls in the second category
since it is based on the influence-reaction model. More specifically, DIVAs be-
longs to the class of metric environments, i.e., environments that use a grid-like
structure, and are based on cellular automata concepts. Two recent multi-agent
systems follow the same ideas. AKIRA [26], whose environment can be repre-
sented metrically, has rules and dynamics that can be used to model it as a
simple agent. While the environment is responsible for simple system functions,
it appears to be implemented as a single daemon. DIVAs differs from AKIRA’s
centralized nature of sharing messages via a blackboard, by having the cell con-
troller dynamically manage the agent’s perception of the environment.

Another work has been presented that offers agents and environment as a set
of environment logical processes (ALPs and ELPs)[27]. The shared state of the
environment is assigned to a group of special logical processes called Communi-
cation Logical Processes (CLPs), and the distribution of the state is performed
dynamically in response to events generated by agents and environment. The
CLPs form a tree where the ALPs and the ELPs are the leaves, and each CLP
maintains a subset of the shared state associated with the children ALPs/ELPs.
At the conceptual level, our work has some commonalities with this model since
we also consider agents and environment as parallel logical processes, and we do
allow dynamic state information sharing among the various entities. Our work
diverge at the detailed design and implementation levels. Experiments have to
be run to determine the efficiency of the CLP tree structure, versus the DIVAs
cell network architecture.

The version of the DIVAs environment presented in this paper is undergoing
change. We are currently re-implementing the Environment Specification Tool
using the Eclipse Framework version 3.1 and Eclipse Rich Client Platform (RCP)

66 R. Steiner, G. Leask, and R.Z. Mili

version 3.1.0. Two views of the environment will be offered: the Levels Map
View, and the Environment View. These views characterize the main perspective
used in the tool and are implemented by extending org.eclipse.ui.perspectives.
Each view is implemented by extending org.eclipse.ui.views. We will also be
adding a 3D visualization to the capabilities of the Visualization Framework.
It is interesting to note that the addition of a new visualization will not cause
any change to the DIVAs AES structure since the AES architecture is decoupled
from the visualizations. Also, we plan on testing the efficiency of the MTS on
different sized populations of agents, and determining the limits of the current
architecture.

References

1. Weyns, D., Parunak, H.V.D., Michel, F.: Environments for multiagent systems:
State-of-the-art and research challenges. In: Post-Proceedings of the First Interna-
tional Workshop on Environments for Multiagent Systems. Volume 3374., Springer-
Verlag (Spring 2005)

2. Bellifemine, F., Poggi, A., Rimassa, G., Turci, P.: An object-oriented framework to
realize agent systems. Technical report, Universit di ParmaArizona, Italy (2000)

3. Howden, Ralph Ronnquist, A.H., Lucas, A.: Jack summary of an agent infrastruc-
ture. In: 5th International Conference on Autonomous Agents. (2001)

4. Chauhan, D.: JAFMAS: A Java-Based Agent Framework for Multi-Agent Systems
Development and Implementation. PhD thesis, University of Cincinnati (1997)

5. Sycara, K., Paolucci, M., Van-Velsen, M., Giampapa, J.: The retsina mas in-
frastructure. special joint issue of Autonomous Agents and MAS 7 (2003)

6. Nwana, H., Ndumu, D., Lee, L.: Zeus: An advanced tool-kit for engineering dis-
tributed multi-agent systems. In: Proceedings of PAAM98, London U.K. (1998)
377–391

7. Rogers, T., Ross, R., Subrahmanian, V.: Impact: A system for building agent
applications. Journal of Intelligent Information Systems 13 (1999)

8. Sloman, A., Poli, R.: SIM AGENT: A toolkit for exploring agent designs. Lecture
Notes in Computer Science 1037 (1996) 392

9. Technologies, B.: Cougaar architecture document. Available from BBN Technolo-
gies over the Internet (accessed November 2005) http://www.cougaar.org.

10. Cabri, G., Leonardi, L., Zambonelli, F.: Mars: A programmable coordination ar-
chitecture for mobile agents. In: IEEE Internet Computing. (2000)

11. Sun Microsystems, Inc: The JavaSpaces v1.2.1 Specification. (2002)
12. Schelfthout, K., Holvoet, T.: An environment for coordination of situated multi-

agent systems. In: First International Workshop on Environments for Multiagent
Systems, New York, USA (2004)

13. Julien, C., Roman, G.: Egocentric context-aware programming in ad hoc mobile
environments. In: 10th International Symposium on the Foundations of Software
Engineering, Charleston, USA (2002)

14. Mamei, M., Zambonelli, F., Leonardi, L.: Tuples on the air: A middleware for
context-aware computing in dynamic networks. In: ICDCS Workshop. (2003)

15. Murphy, A., Picco, G., Roman, G.: Lime: a middleware for physical and logical
mobility. In: 21st International Conference on Distributed Computing Systems,
21st International Conference on Distributed Computing Systems (2001)

An Architecture for MAS Simulation Environments 67

16. Mamei, M., Leonardi, L., Zambonelli, F.: Co-fields: Towards a unifying approach
to the engineering of swarm intelligent systems. In: Lecture Notes in Artificial
Intelligence. Volume 2577., Berling Heidelberg New York (2003)

17. Brueckner, S.: Return from the Ant. PhD thesis, Humboldt-Universitt, Berlin
Germany (2000)

18. Collier, N.: Repast: An extensible framework for agent simulation. Avail-
able from RePast Group over the Internet (accessed November 2005)
http://repast.sourceforge.net/.

19. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K.: Mason: A new multi-agent
simulation toolkit. In: Proceedings of the SwarmFest Workshop, Michigan, USA
(2004)

20. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelli-
gence. Addison Wesley (1999)

21. Mili, R.Z., Oladimeji, E., Steiner, R.: Design of the divas simulation system. Tech-
nical Report UTDCS-11-05, University of Texas at Dallas, USA (2005)

22. Oladimeji, E., Mili, R., Shakya, U.: Towards an abstract agent architecture for
mas simulation systems. Technical Report UTDCS-12-05, University of Texas at
Dallas, USA (2005)

23. Mili, R., Leask, G., Steiner, R., Oladimeji, E.: Architecture and design viewpoints
for agent-environment systems. Technical Report UTDCS-43-04, University of
Texas at Dallas, USA (2004)

24. Mili, R., Leask, G., Shakya, U., Steiner, R., Oladimeji, E.: Architectural design
of the divas environment. In: Proceedings of 1st workshop on Environments for
Multiagent Systems, New York, USA (2004)

25. Leask, G.: Two dimentional environment for the divas multi-agent system. Master’s
thesis, University of Texas at Dallas, USA (2005)

26. Pezzulo, G., Calvi, G.: Designing and implementing mabs in akira. In Davidsson,
P., Logan, B., Takadama, K., eds.: Multi-Agent and Multi-Agent-Based Simula-
tion - Joint Workshop MABS 2004, Revised Selected Papers, New York, NY, USA,
Springer, Lecture Notes in Computer Science Series (July 2004) 49–64

27. Lees, M., Logan, B., Minson, R., Oguara, T., Theodoropoulos, G.: Distributed
simulation of mas. In Davidsson, P., Logan, B., Takadama, K., eds.: Multi-Agent
and Multi-Agent-Based Simulation - Joint Workshop MABS 2004, Revised Selected
Papers, New York, NY, USA, Springer, Lecture Notes in Computer Science Series
(July 2004) 25–36

Indirect Interaction in Environments
for Multi-agent Systems�

David Keil and Dina Goldin

University of Connecticut, Storrs, CT, USA
{dkeil, dqg}@engr.uconn.edu

Abstract. The E4MAS community is leading an effort to accept en-
vironments of multi-agent systems as a first-class entity, distinguishing
indirect interaction via the environment from the environment’s role in
message transport. This paper defines classes of interaction (sequential
and multi-agent, direct and indirect) and environments (physical and
virtual, persistent and amnesic, dynamic and static). These notions pro-
vide an underpinning for proper acknowledgement of the roles of MAS
environments and for powerful MAS design techniques that use indirect
interaction. We explore the limitations of MAS models that are restricted
to message passing and suggest research directions for constructing more
powerful models.

1 Introduction

In situated multi-agent systems (MAS), the environment is independently ac-
tive, in effect providing a shared memory, and making possible decentralized
coordination [41]. For these reasons, research in multi-agent systems has begun
to accept the environment of a MAS as a first-class entity. The E4MAS commu-
nity [7] is at the forefront of this effort, pointing out how agents may use the
environment in coordinating their activities.

The CFP for E4MAS 2005 distinguishes interaction via message transport
from interaction via the environment, and points toward the more active con-
ception of the environment in the latter case. Indirect interaction is precisely the
nontrivial use of the environment in the way that the E4MAS CFP suggests.
The trivial use of the environment for message transport is a case of what we
call direct interaction.

Currently accepted models of concurrency explicitly represent only direct
interaction (message passing). A major challenge for MAS research is to break
out of the restricted framework that limits the environment to the role of message
transport. Meeting this challenge entails providing a theoretical underpinning for
indirect interaction among agents via the environment. To support research in
multi-agent systems and their environments, new formalizations are required
that explicitly represent indirect interaction.

� Supported by NSF award 0545489.

D. Weyns, H. Van Dyke Parunak, and F. Michel (Eds.): E4MAS 2005, LNAI 3830, pp. 68–87, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Indirect Interaction in Environments for MAS 69

After surveying of research in environments for multi-agent systems, we out-
line steps toward formalizations that will address the needs of MAS research. We
make a formal distinction between use of the environment for message transport
and use of it for indirect interaction, and define a useful taxonomy of environ-
ments. In particular, we categorize environments along three dimensions:

- persistent vs. amnesic
- dynamic vs. static
- physical vs. virtual

Persistent environments have memory of past interactions with agents; per-
sistence is a prerequisite for indirect interaction. Dynamic environments change
their responses to agents over time; as a result, agents in dynamic environments
may need adaptive behavior to meet utility criteria. Physical environments are
ones in which situated agents operate; these environments can offer the greatest
challenges, having memory with which to counter-adapt and lacking the pre-
dictability of computing entities.

Research in indirect interaction via the environment points to the compu-
tational power of this form of interaction. For example, natural systems of ex-
tremely simple agents, such as amoebae and ants, perform complex tasks via
indirect interaction, also known as stigmergy (Sect. 3.3). Indirect interaction of-
fers a powerful tool for MAS design (Sect. 4.3). The limitations of the standard
models of concurrency, which are based on message passing (direct interaction),
prevent them from modeling this form of interaction (Section 5.3).

Our work is part of an effort within the theory community to account for and
to model interactive forms of computation [40,12,38], analogous to the successful
modeling of algorithmic computing [19] with Turing machines [36]. We believe
that new models of multi-agent interaction, based on indirect interaction, are
needed to adequately underpin research in multi-agent systems.

Outline. In Sect. 2 we survey environments in MAS research, provide a definition
of the notion of an environment, and classify environments. As a foundation for
formal discussion of MAS environments, we offer in Sect. 3 a set of definitions
of interactive computation, the environment of a single computing agent, persis-
tence in environments, and direct and indirect interaction. Properties of indirect
interaction and examples of it in E4MAS research are presented in Sect. 4. In
Sect. 5, we highlight the limitations of the message-passing model of Milner.
Sect. 6 sums up and points to related work and future research challenges.

2 MAS Environments

In this section, we survey E4MAS research (Sect. 2.1). This research has pro-
duced a number of characterizations and definitions of the term “environment.”
Based on this survey, and on our own work in models of interaction, we formu-
late a unifying definition of MAS environments (Sect. 2.2). We also provide a
taxonomy, i.e., a set of dimensions along which to classify MAS environments

70 D. Keil and D. Goldin

(Sect. 2.3). Our definitions apply to physical environments of embedded agents
as well as virtual environments of software agents.

2.1 Environments in E4MAS Research

Research in environments for multi-agent systems has produced many examples
of environments, with some common features.

A web site may be described as an environment for agents that visit it via
HTTP. Its spatial structure is defined by pages hyper-linked together. Users
move through this environment; hence linking and unlinking to a page is a form
of mobility. The Multilayered Multi-Agent Situated Systems (MMASS) model [3]
represents such an environment as an undirected graph where pages are vertices
and links are edges. Since multiple clients may visit the same web site concur-
rently, and may change the state of data stored at the site, it is possible not
only for agents to interact with the site, but also for agents to interact with each
other via the site.

The web site here is an environment via which clients interact with each other,
not by passing messages to each other, but anonymously and without handshake.
This research is recognized as pointing to “a new form of interaction” among
simultaneous visitors to a web site [3]. Traditional discourse about web-based
interaction focuses on direct file transfers between servers and individual clients
(browsers viewing pages).

An environment may be specifically the physical (analog) setting in which
agents are situated. Alternatively, it may be a virtual (digital) setting for agents,
subject to being shaped by system designers. Indirect interaction via the physi-
cal environment is also known as stigmergy. MAS-based manufacturing control
serves as an example of stigmergy and of self-organization, the attribute of a
decentralized MAS that displays behavior at a global level that is more than the
composition of the behaviors at the lower level, of subcomponents. The Product-
Resource-Order-Staff Architecture (PROSA) [37] supports self-organization by
agents.

In a MAS of situated agents, the environment of each agent is often a combi-
nation of virtual and physical. An example of such a combination is the system
of automatic guided vehicles (AGVs) that transport loads through a warehouse,
adapting flexibly to changing conditions [42]. The application described supports
a local virtual environment for each vehicles, which constitute a decentralized sys-
tem. These virtual environments contain three types of information: static (e.g.,
layout of factory floor); observable (from other local virtual environments; e.g.,
position of an AGV); and shared (modifiable in two local virtual environments
concurrently; e.g., traffic map). When a nearby load (located in the physical
environment) requires transport, the location of that load is communicated to
the AGV via its virtual environment; agents can also communicate with each
other with the help of their local virtual environments.

Another example is a PDA-based museum-visitor scenario for access to mu-
seum information [43]. Visitors may interact with the museum environment and
may also interact via a shared environment of tuples, such as when expressing

Indirect Interaction in Environments for MAS 71

the desire for a group meeting, Artwork and visitor agents may enable human
visitors to move toward art pieces of interest, or toward other visitors for group
meetings.

Sometimes, however, situated agents may live in a purely virtual environ-
ments, such as the the distributed ant algorithm framework of [22].

It is possible to view the virtual environment as (non-agent) entities in a MAS
that affect agents [34,41]. Often, it is a single software entity with individual
objectives, which communicates with the agents in the MAS. Unlike the agents,
it is an independent and self-supporting entity, offering support services to the
agents, including services of mediation between agents [39].

Seen as an organizational layer, a MAS environment may be designed to im-
pose constraints on agent behavior. A common constraint is that of locality; that
is, agents in a MAS each have their own local environment, and their interaction
is limited to this environment. This notion of locality adds a spatial aspect to a
MAS environment [41].

Some discussion of environments refers to software or hardware platforms as
“environments,” and other discussion refers to entities that interact with systems
of agents as their “environments.” Consider a MAS running as an application on
a computer. We may say that the MAS’s environment is the set of entities with
which the agents interact, or we may alternatively say its environment is the
computer and its operating system, and all the data streaming through ports of
the computer. These are completely different senses of the word “environment.”

Sometimes, a MAS environment is referred to as application environment.
The application environment may be defined as “the logical entity that repre-
sents the space in which the Application Agents perform their job.” This notion
of environment can be contrasted with the execution infrastructure of a MAS,
sometimes referred to as its execution environment; examples are those provided
by Jade, LIME, JavaSpaces, or Retsina. The term “Distributed Agent Environ-
ment” (DAE) has been used to refer to the support infrastructure [43].

Both notions of the environment are meaningful, but to use the same word for
both within the same field of research presents a conflict and risks being highly
misleading. Our interest in this paper lies only with application environments;
we will not be considering execution environments.

2.2 Defining Environments

As researchers in models of interactive computation, we suggest ways to unify
and reconcile the various descriptions of environments presented in Sect. 2.1.
This work is aimed towards providing foundations for new models of multi-agent
interaction. We also suggest below some dimensions of a taxonomy of multi-agent
system environments.

The following concise definition emerges from the examples in Sect. 2.1:

Definition 1. An environment of a multi-agent system is a physical or virtual
setting that acts as the producer of the system’s inputs and consumer of its
outputs. The environment of a single computing agent is simply the environment
of the multi-agent system that consists only of this agent. �

72 D. Keil and D. Goldin

Our approach to conceptualizing environments positions them as a relative no-
tion that is defined by interaction. An environment of a system is identified with
the set of agents or other entities with which it interacts, and the environment
of an agent is identified likewise. Suppose that agents in a multi-agent system
interact with each other and with the system environment; then, these agents
are part of each other’s environment, though they are not part of the system’s
environment. In fact, if the system were to consist of two agents that interact
exclusively with each other, then each would be each other’s environment. This
underscores the relative nature of the concept of environment.

It might be objected that environments and agents are distinct because agents
are active and environments may be passive. But consider the standpoint of agent
A that interacts with a “passive” entity B, which also interacts with agent C.
Then as observed by A, B changes its state autonomously (when C changes B’s
state); hence from A’s perspective, B does not behave passively. Thus, to agents
such as A, passive environmental entities may be indistinguishable from active
agent entities.

When two agents share the same environment, or have overlapping local
environments (see Sect. 2.1), it follows naturally that these agents may end up
affecting each other, by reading from and writing to their common environment.
We say that they interact indirectly via their environment; it is this form of
interaction that is of particular interest to us.

2.3 A Taxonomy of Environments

We focus on some properties of environments that help establish a taxonomy
of MAS environments. In their popular textbook on artificial intelligence [31],
Russell and Norvig have listed the following dimensions of environments, among
others: dynamic versus static, accessible versus inaccessible; deterministic versus
non-deterministic; discrete versus continuous.

We suggest here the dimensions of persistent versus amnesic, dynamic ver-
sus static, and physical versus virtual as the basis for a taxonomy of agent en-
vironments [17]. Other dimensions to be considered include centralized versus
decentralized [16,9].

We begin with the static/dynamic dimension in our taxonomy of MAS
environments:

Definition 2. An environment E is static with respect to an agent A if A’s in-
puts from E are strictly dependent on A’s outputs to E. A dynamic environment
is one that is not static. �

For example, a lamp that lights dependably when plugged in and goes out when
unplugged defines a static environment w.r.t. the agent operating the lamp. A
lamp with a light sensor, which lights when plugged in only if the room is dark,
defines a dynamic environment with respect to the agent.

Dynamic environments are characterized by their capacity to change au-
tonomously. If agents A and C are both interacting with an entity B (but not
with each other), and C’s interaction with B affects B’s behavior, then B is a

Indirect Interaction in Environments for MAS 73

dynamic environment with respect to A. Clearly, an environment that is static
is more predictable than a dynamic one.

We now define a class of environments that can remember from previous
interactions:

Definition 3. An environment is persistent if its outputs depend not only on
its immediately preceding inputs, but also on earlier inputs. An environment is
amnesic if it is not persistent. �

For example, an electric light with a button switch, that lights when it is off
and the user presses the button, but turns off when it is on and the user presses
the same button, defines a persistent environment. A piece of paper defines a
persistent environment w.r.t. a person writing on the paper. The air is amnesic
w.r.t. a person singing to it, and persistent w.r.t. a person spraying perfume
into it.

A persistent virtual environment can be viewed as a reactive system [21];
so can intelligent agents (as opposed to reflex agents [31]). When systems of
intelligent agents operate in persistent environments, their design is concerned
with utility maximization, rather than with satisfaction of predicates as in the
design of functional systems [45].

When an environment is persistent, it is sometimes modeled as a Markov
decision process (MDP); when it is also dynamic, it is modeled as a partially
observable Markov decision process (POMDP); see [14].

Our taxonomy distinguishes real-world environments from the digital envi-
ronments of finite computing devices:

Definition 4. A physical environment is one observable only by analog sensors.
A virtual environment is accessed digitally. �

Note that our definition of environments (Definition 1) is general enough to en-
compass both virtual and physical environments. When an agent’s environment
is physical (the real world), the kinds of input and output are different from
those in virtual environments. In artificial intelligence, these inputs and outputs
are known as percepts and actions, respectively. An example is an automatic
car [8], whose percepts consist of video camera snapshots, and whose actions
consist of turning the wheel or pushing on the brake pedal. According to our
definition, the road constitutes the environment of an automatic car.

Since we are interested in indirect interaction, our special concern is with
environments that have persistence, a necessary precondition for indirect inter-
action. The notion of persistence is consistent with Piaget’s definition of behavior,
whose purpose is to change the state of the environment in a way favorable to a
species or organism [29]. Persistence enables a higher long-term expectation of
reward from the environment, not just a higher immediate reward.

The environment in which we drive a car is dynamic, persistent, and physical.
It changes with respect to the car whenever we cause the car to move. Cars,
pedestrians, and other potential obstacles appear and vanish in a way that our
actions determine.

74 D. Keil and D. Goldin

Not all dynamic environments are persistent, in the sense that they “re-
member” what happens to them, and this influences their later input to agents.
Consider the environment of a theater stage, with either a play or a comedy
routine; the audience is the agent. Both the play and the comedy routine are
dynamic. The play is amnesic, in that the viewers’ reaction cannot affect its
progress. By contrast, the comedy routine is persistent, in that the comedian
may make comments about audience members, or change his jokes in response
to audience reaction.

3 Interactive Computation

As we have suggested, identifying the environment of an agent or system of
agents presupposes the existence of interaction. In this section, we formalize the
notion of interaction, making the possibility of mutual causality a condition for
applying it (Sect. 3.1). We then distinguish two forms of interaction, direct and
indirect (Sect. 3.2), with examples (Sect. 3.3).

3.1 Sequential and Multi-agent Interaction

Interaction is a form of concurrent computation where communication is viewed
as occurring during the computing process, rather than before or after it [13].

Definition 5. Interactive computation is the ongoing exchange of data among
the participants (agents or their environment) such that the output of each par-
ticipant may causally influence its later inputs. �

Exchange of data that never affects the actions of the recipient, and never has
a later effect on the inputs of the sender, is not true interaction between them.
A person who responds to what is shown on a television screen, by talking to or
shouting at the television, is not interacting with it. A microphone and an ampli-
fier do not interact unless feedback is present. Research in cybernetics fifty years
ago recognized feedback or mutual influence as a feature that distinguishes an
important kind of coupling of systems, both natural and artificial ones [44,2,32].

We consider feedback essential to interaction. One-way communication with-
out feedback should be distinguished from interaction; likewise, input alone is
not interaction. Interaction must allow mutual causality, hence the semantics of
interaction demand that feedback be present.

Note that the outputs of two agents may causally influence their later in-
puts without the agents communicating directly; they may communicate via an
intermediary. In that case the causality and interaction are indirect (Sect. 3.2).

In interactive computation, the role of the environment is heightened, relative
to the role of the environment in the execution of an algorithm. An algorithm is a
description of the steps for effectively transforming an input to an output, so that
the output is a (computable) function of the input [19]. Once the environment
determines the input value passed to an algorithm, its job is done. By contrast,
the environment participates throughout an interactive computation.

Indirect Interaction in Environments for MAS 75

For algorithmic (function-based) computation, captured by Turing machines,
the properties of an environment are of no consequence, because one execution
of an algorithm simply computes a function on whatever single input arrives
from the environment. For interactive computation, on the other hand, how an
action by a computing agent will change its environment can be crucial to the
choices made by the agent.

The simplest form of interactive computation is when the communication
between a system and its environment takes place via a single stream (channel
or interface). This type of interaction is referred to as sequential:

Definition 6. Sequential interactive computation is interaction involving two
participants, at least one of which is a finite computing agent (machine, device).

�

By definition, the other participant in sequential interactive computation serves
as the environment of the first.

Fig. 1. Agent and environment

In sequential interaction, there is a single input stream and a single output
stream between the computing entity and its environment (see Fig. 1). The
temporal interleaving of these two streams creates a single interaction stream
that consists of pairs of input and output tokens. In a physical environment,
the notion of sensing by a computing agent corresponds to getting input, and
the notion of actuating corresponds to emitting output. Sequential interactive
computation has been formalized by Persistent Turing Machines (Sect. 5.1).

As we explain in Sections 3.2 and 4.2, persistence of state in an environ-
ment makes possible indirect interaction among agents, which in turn facilitates
systems of agents, i.e., MASs. Sequential interaction with its single interaction
stream is distinguished from multi-agent interaction, where multiple autonomous
streams may exist simultaneously between the system and its environment. This
is illustrated in Figure 2; the dashed box indicates the boundary between the
system and the external environment.

We define multi-agent interaction as follows:

Definition 7. Multi-agent interaction is interactive computation involving
more than two agents; the agents are assumed to be asynchronous. �

It is conjectured that models of multi-agent interaction such as the
multi-stream interaction machine (MIM) are more expressive than models of
sequential interaction [40]. The remainder of this paper focuses on multi-agent
interaction and MASs.

76 D. Keil and D. Goldin

Fig. 2. Multi-agent interaction

3.2 Direct and Indirect Interaction

It is commonly thought that interaction is the same as communication, associ-
ated with the notion of message passing [26] or targeted send/receive (TSR) [10].
We refer to this form of interaction as direct:

Definition 8. Direct interaction is interaction via messages, where the identi-
fier of the recipient is specified in a message. �

Message passing is appropriate when two entities possess identifying information
about each other and have the intent to communicate with each other. However,
entities may also interact without knowing about each other, and without even
having any intent to communicate. This happens when they share a common
environment, and the changes made by one of them to the environment can be
observed by the other. This second category of interaction is known as indirect,
originally defined in [15]:

Definition 9. Indirect interaction is interaction via persistent, observable
changes to a common environment; recipients are any agents that will observe
these changes. �

Note that the acts of making changes (output) and of observing those changes
(input) are decoupled in time; persistence of the environment allows the change
to endure, allowing for a lapse of time before it is observed. Furthermore, the
identity of the observer(s) may not yet be determined when the environment is
changed, allowing for anonymous interaction. In fact, the change need not be
motivated by the need to communicate, but may occur as a byproduct of the
first agent’s computation.

While indirect interaction differs significantly from direct interaction (com-
munication), both clearly satisfy the definition of interaction (Definition 5). How-
ever, in computing, indirect interaction seems to be treated as a poor cousin of
the direct form, as it is not supported by current models of interaction.

Indirect interaction deserves the same level of recognition and the same at-
tention from the theoretical community as does direct interaction. It is not by
accident that multi-agent systems occurring in nature often rely on indirect inter-
action to “get their job done.” Likewise, indirect interaction via work in progress,
shared writing, pictures, and publicly viewed symbols of all kinds, is the basis
for most forms of human production and for shared culture and markets of all
kinds. Some examples of such multi-agent systems are presented next.

Indirect Interaction in Environments for MAS 77

3.3 Examples of Indirect Interaction

In this section, we discuss several examples of indirect interaction via the envi-
ronment. The first three are based on naturally occurring multi-agent systems:
ant trails [4,5], termite piles [30], and slime molds [18]. The last is a classic
example of distributed computation, the Dining Philosophers problem [6].

Most of us have seen a column of ants forming a busy highway on our floor
or our counter top. Ant colonies solve the problem of efficiently foraging for food
sources by a decentralized approach involving multi-agent indirect interaction,
where each ant deposits pheromones (slowly evaporating scent chemicals) as
it carries food, and each ant follows pheromone trails as it searches for food.
The pheromone trail to a food source gets reinforced over time, turning into a
highway. Once the food source is exhausted, the trail is no longer reinforced, and
it evaporates over time. Without a plan, the ants find paths to the food that
tend toward optimality.

Fig. 3. Ant trails

The problem of building an ant hill or a termite pile is likewise solved in a
decentralized fashion, relying on indirect interaction. In the StarLogo termite
simulation [33], the termites build a single circular pile of wood chips, despite
having no capacity for planning or coordination, and with minimal ability to
perceive. They continuously apply a simple protocol: move at random, pick up
a chip whenever one is encountered, and put it down when the termite bumps
into another chip. Eventually, a single pile emerges. Remarkably, the termites
accomplish this task without having an internal representation of their eventual
goal.

Another naturally occurring multi-agent behavior that depends on indirect
interaction is the formation of slime molds. When their food is scarce, slime
mold amoeba organisms emit a “distress” chemical that causes them to grav-
itate to one another. The chemical signal is relayed among these microscopic
organisms, and they migrate in a spiral toward the center of such signals, even-
tually aggregating in huge numbers into a single crawling slug-like organism
that is large enough to see with the naked eye. Again, aggregate behavior
emerges from individual behavior through indirect interaction, without
centralized direction.

78 D. Keil and D. Goldin

In each of the above examples, the global behavior of the population is more
than the composition of the individual behaviors. No one in that population
ever decides where the trail will lie, where the pile will be located, or where the
slime mold slug will raise its head. Individually, these organisms are too simple
to have an “understanding” of such complex phenomena, yet their behavior as
an aggregate predictably results in these phenomena. Emergent behavior occurs
in such complex systems, which exhibit self-organization.

The classic Dining Philosophers problem is another example of indirect inter-
action. In this problem, philosophers sit at a circular table, with one chop-stick
between each pair of diners. Each one occasionally interrupts her thinking to
pick up two chop-sticks – first one, then another – and eat, then put them down,
repeating these steps when hungry. The problem is to avoid starvation by dead-
lock; if each diner simultaneously picks up the left chop-stick, for example, and
holds it until the other one is available, then all will starve. One solution involves
exogenous coordination by managing channels [1].

Fig. 4. Dining Philosophers

This problem is often formulated in terms of concurrent communicating
processes that share common resources. The objective is to define a protocol
for a ring-shaped arrangement of processes, each communicating only with its
two neighbors, such that all processes are allowed to move forward under the
constraint that no two adjacent ones may execute simultaneously. Yet in the
original problem, the philosophers never communicate with each other; in fact,
it is not even clear that they are aware of each other, as they sit deep in thought
or search hungrily for their chop-sticks. Despite the lack of direct communica-
tion, each philosopher’s behavior is affected by the others, since she cannot eat
while her neighbor is eating. This is due to indirect interaction; the philosophers
communicate indirectly via the chop-sticks.

4 Indirect Interaction and Multi-agent Systems

Indirect interaction is ubiquitous. In this section, we discuss the use of indirect
interaction in research in environments for multi-agent systems (Sect. 4.1). We
then focus on the properties of indirect interaction, which include name decou-
pling (anonymity), time decoupling (asynchrony), space decoupling (locality), and
non-intentionality (Sect. 4.2) and sketch an approach to MAS design that makes
use of indirect interaction (Sect. 4.3).

Indirect Interaction in Environments for MAS 79

4.1 Indirect Interaction in MAS Research and Beyond

The examples in Section 3.3 have inspired the design of MAS systems based on
indirect interaction. Digital pheromones, which are data structures inspired by
the insect model, have been used for coordination of autonomous vehicles [28].
A related approach is to use force fields [20], which are generated by the agents,
propagated via some embedded infrastructure, and perceived locally by those
agents in the vicinity of the field.

MAS’s for manufacturing control are an example of indirect interaction,
where the environment is “a first-class abstraction” [37]. Rather than commu-
nicating only with each other, the various agents involved (resources, orders,
products, etc.) all interact with the common factory environment and adjust
their behavior according to what they observe in that environment.

In another example, a web site serves as a shared environment for the agents
that visit it via HTTP. Its spatial structure is defined by pages hyper-linked
together. Users move through this environment; hence linking and unlinking to
a page is a form of mobility. Since agents can both write to, and read from, the
web pages, it is possible not only for agents to interact with the site, but also
for agents to interact with each other indirectly, via the site. This interaction
is anonymous, without handshake. This research is recognized in [3] as point-
ing to “a new form of interaction”; we can now see that this refers to indirect
interaction.

[42] introduces a virtual persistent environment for situated MASs of au-
tonomous guided vehicles (AGVs) that is an alternative to the approach of [28].
The virtual environment is alongside the physical environment; it is distributed
over physical agents and synchronized using middleware. It maintains a shared
memory of the agents, and its role is to set rules of dynamic relationships among
agents. This is in effect exogenous coordination [1].

From the above examples it is clear that creation of a persistent virtual envi-
ronment, adequate for supporting indirect interaction, is useful for engineering
certain applications. We also believe that for some forms of system behavior,
indirect interaction is not only useful but necessary; direct interaction is not
sufficient.

Indirect interaction, where agents (organisms) interact via their shared en-
vironment rather than by exchanging messages directly, is ubiquitous outside
of MAS research as well. In addition to above examples, there are many others,
both within and outside computer science. Here is a sampling from various fields:

– Operating systems: Processes exchange information via semaphores in shared
memory;

– Programming languages: The Linda language uses tuple spaces to enable
coordination by indirect interaction [10];

– Anatomy: Cells exchange information via hormones in the bloodstream;
– Social biology: In stigmergy, social insects interact indirectly by leaving trails

of pheromone chemicals [35];
– Sociology: Most group dynamics consist of actions or percepts whose destina-

tions or sources are other than one’s immediate partner in a communication;

80 D. Keil and D. Goldin

– Multi-agent systems: Agents communicate indirectly either through interme-
diary agents or through changes in the environment;

– Economics: the storage and publication of stock market listings enables large
numbers of buyers and sellers to interact indirectly to negotiate prices.

In the next section, we discuss indirect interaction in multi-agent systems at
greater depth, focusing on its properties.

4.2 Properties of Indirect Interaction

Several characteristics of indirect interaction distinguish it from message passing
(direct interaction):

– time decoupling (asynchrony): due to persistence of the environment, there
may be a delay between the state change and its observation;

– anonymity: the observer’s identity need not be known to the originator of
the state change;

– late binding of recipient: the identity of the observer of changes to the en-
vironment may be determined dynamically by events occurring after the
change is made;

– space decoupling (locality): indirect interaction of mobile agents need not
imply co-location; one may leave after making state changes, and the second
state may arrive later to observe them;

– non-intentionality: indirect interaction does not require an intent to commu-
nicate;

– analog form: the medium of indirect interaction may be the real world, e.g.
for embedded or situated agents (robots, sensors).

Asynchrony in indirect interaction follows from time delay due to the persis-
tence of the observable changes in the environment. By contrast, message passing
is synchronous; synchronization occurs when one process stops and waits until the
other has reached a certain point in the computation or interaction. Synchroniza-
tion by handshake enables processes to begin communicating with each other.

Examples of synchronous interaction are conversations and the TELNET
protocol. Asynchronous interaction includes exchanges of email and communi-
cation among ants via pheromone trails. Message queues enable asynchronous
communication when interaction is direct.

Anonymous interaction occurs when computing entities interact without
knowledge of each other’s identities. In indirect interaction, anonymity is not
only possible but often necessary, when the identity of the observer (recipient) is
not determined until after the change to the environment has been made. When
an ant leaves a pheromone trail, it is not yet known which of the ants milling
nearby will be the one to pick up this scent. Similarly, after a termite drops a
wood chip, many things can happen that will eventually determine which termite
will pick it up.

The Dining Philosophers problem also exhibits the above characteristics. This
problem has the properties of (1) locality, because diners can only see neighboring

Indirect Interaction in Environments for MAS 81

chop-sticks; (2) anonymity, because diners need not know each other’s names or
even whether their neighbors exist; (3) asynchrony, because a diner doesn’t nec-
essarily pick up a chop-stick as soon as it is put down; and (4) non-intentionality
of communication, because diners pick up (put down) chop-sticks so as to eat
(think), not to communicate.

A mobile version of the Dining Philosophers problem can also be defined,
where the philosophers may leave to go sleep, then come back to occupy the first
empty chair they can find. This mobile version exhibits the additional property
of late binding of recipient, since the identity of one’s neighbor cannot be known
ahead of time.

4.3 Indirect Interaction and MAS Design

While indirect interaction serves as a valuable communication paradigm for all
types of agency, its properties make it ideal for the design of large complex
systems from small simple agents. Ants, termites, and slime molds from the
previous section are all examples of such systems that occur in nature.

In II-MAS, it is assumed that the agents are much simpler than their en-
vironment; in the extreme case, agents are finite-state automata (single-celled
organisms), while the environment is the real world. The agents in II-MAS are
therefore expected to lack the cognitive abilities to observe and act on the state
of the complete environment. As a result, they must limit themselves to a small
part of their environment that we call their locality, where locality may be either
physical or virtual. In either case, if the locality of an agent may change during
the computation, we refer to the agent as mobile. As a result of mobility, the re-
cipient of indirect interaction need never share the same locality as the initiator
of that interaction; this is what we call space decoupling.

In an II-MAS, each agent’s protocols for its interaction with the environment
are simple and repeatable. While there may be more than one type of ant (worker,
drone, etc.), there is no need to provide a unique program for each ant or termite.
The agents in II-MAS are not concerned with other agents, except as those agents
make changes to their shared environment. There are no issues of scalability or re-
design if agents are added to, or removed from, the system during the computation.

Anonymity ensures that agents in II-MAS are interchangeable, while asyn-
chrony allows systems to be adaptable. Unlike algorithms, where a single de-
viation from the plan means an incorrect result for the computation, II-MAS
can be designed to withstand dynamic changes in the agent population, or to
the environment. If the food source moves, the ant trails will eventually lead to
the new location; if the wood chips are disturbed, the termites will eventually
reassemble them.

5 Modeling Multi-agent Systems and Their Environments

Just as a gap has been observed between the theory of computation and concur-
rency theory [13], we also see a gap between research in multi-agent systems and

82 D. Keil and D. Goldin

the modeling of concurrent distributed systems. Whereas indirect interaction via
the environment can play a key role in MASs, the traditional message-passing
model of concurrency provides no first-class representation of indirect interaction.

Below we present a model of sequential interaction (Sect. 5.1) as well as
Robin Milner’s model of concurrency, based on message passing (Sect. 5.2), and
highlight their limitations with respect to MAS research (Sect. 5.3).

5.1 A Formal Model of Sequential Interaction

Multi-agent interaction (Definition 7) has to date been modeled as as a set of
concurrent instances of sequential interactions (Definition 6). Let us begin with
a model of sequential interactive computation based on Turing machines, the
Persistent Turing Machine (PTM) [11,12]. The PTM is a Turing machine with
three special features that distinguish it from a TM:

– The TM’s executions are iterated so that the PTM performs an infinite series
of TM computations;

– the input/output semantics of the PTM differ from those of the TM in
that input and output are dynamically generated streams; where later input
tokens to the PTM may depend on its earlier output tokens;

– The PTM has a persistent tape, which retains its contents between one
execution of the TM and the next.

A PTM is a nondeterministic 3-tape Turing machine (N3TM) with a read-
only input tape, a read/write work tape, and a write-only output tape. Upon
receiving an input token from its environment on its input tape, a PTM computes
for a while and then outputs the result to the environment on its output tape,
and this process is repeated forever. A PTM performs persistent computations
in the sense that a notion of “memory” (work-tape contents) is maintained from
one computation step to the next, where each PTM computation step represents
an N3TM computation.

Persistence extends the effect of inputs. An input token affects the compu-
tation of its corresponding macrostep, including the work tape. The work tape
in turn affects subsequent computation steps. If the work tape were erased,
then the input token could not affect subsequent macrosteps, but only “its
own” macrostep. With persistence, an input token can affect all subsequent
macrosteps; this property is known as history dependence.

The treatment of PTMs has proceeded along the following lines. Our team
first formalized the notions of interaction and persistence in PTMs in terms of the
persistent stream language (PSL) of a PTM. Given a PTM, its persistent stream
language is coinductively defined to be the set of infinite sequences (interaction
streams) of pairs of the form (wi, wo) representing the input and output strings
of a single PTM computation step. Persistent stream languages induce a natural,
stream-based notion of equivalence for PTMs. Decider PTMs are an important
subclass of PTMs; a PTM is a decider if it does not have divergent (non-halting)
computations.

Indirect Interaction in Environments for MAS 83

Our team defined the class of amnesic PTMs and a corresponding notion of
amnesic stream language (ASL). In this case, the PTM begins each new com-
putation with a blank work tape. It was shown that the class of ASLs is strictly
contained in the class of PSLs, and that ASL-equivalence coincides with the
equivalence induced by considering interaction-stream prefixes of length one,
the bottom of our equivalence hierarchy; and that this hierarchy collapses in the
case of amnesic PTMs. ASLs are representative of the classical view of Turing-
machine computation. One may consequently conclude that, in a stream-based
setting, the extension of the Turing-machine model with persistence is a non-
trivial one, and provides a formal foundation for reasoning about programming
concepts such as objects with static attributes.

In an analogous fashion to the Church-Turing Thesis, our team hypothesized
that anything intuitively computable by a sequential interactive computation can
be computed by a persistent Turing machine. This hypothesis, when combined
with other results, implies that the class of sequential interactive computations is
more expressive than the class of algorithmic computations, and thus is capable
of solving a wider range of problems.

5.2 Milner’s Model of Concurrency

Robin Milner is a pioneer of models of interaction, winner of the 1992 Turing
award. Milner observed that reactive systems are unlike algorithmic ones in that
they do not compute functions [23]. His Calculus of Communicating Systems
(CCS) formalized some notions about interaction, including the notion of con-
current composition in which systems are composed (placed in communication),
equivalent to the notion that they observe each other [24]. Alongside (mutual)
observation, a second fundamental idea of the CCS was synchronized commu-
nication. Thus under Milner’s theory, communication is sequential interaction
between two agents.

Milner’s π-calculus is a successor to CCS that leaves unchanged the basic
assumption that interaction is reducible to binary communication. Agents take
turns emitting and receiving data, synchronized by a handshake. When agents
lack handshake protocol (as, for example, virtually throughout nature), they
may use buffers to avoid loss of data. Models mentioned by [24] as alternatives
to synchronized models include the Actor Systems of Hewitt and the model of
Kahn and McQueen based on unbounded buffers and queues.

In Milner’s model, communication is in the form of messages, where the
emitting agent knows the identifier of the receiving agent. Hence this form of
communication is sometimes called targeted send/receive (TSR). This assump-
tion is explicitly stated in [25].

Milner has consistently made clear that interaction between agents via their
environment is to be modeled by treating shared memory as processes: “I also
insisted that memory registers be modeled as processes...” [26]. In this way,
the underlying assumption is maintained that all interaction is message passing
between mutually identified processes.

84 D. Keil and D. Goldin

A higher development of this theory occurred with the π-calculus, created to
model mobility, i.e., the dynamic creation or breaking of links between pairs of
processes in a multi-agent system. The mobility of π-calculus was motivated in [27]
by positing the case where one agent (source) wishes to send a value to a second
(destination) via a third (intermediary). The model supports this indirect but tar-
geted communication by enabling the source to send to the intermediary both the
data intended for the destination, and a reference or link to the destination.

While adding mobility, π-calculus does not deviate from CCS’s original phi-
losophy of modeling all interaction as synchronized communication via message
passing from agents to pre-identified recipients. In the next section, we challenge
this approach.

5.3 Limitations of the Message-Passing Model

Can message passing simulate indirect interaction, as concurrency theory as-
sumes? Is it always possible to replace the environment, via which agents in a
MAS interact indirectly, with a mere transport medium for direct interaction
(message passing)?

The assumption that all multi-agent interaction is modeled adequately by
message passing has never been proved. [25], for example, does not assert that
a message-passing model is suitable for interaction in general. Rather, it as-
sumes that shared variables constitute the only alternative to direct interaction,
and shows how a finite number of discrete shared variables can be replaced by
corresponding communicating processes.

The most obvious criticism of this model is its limited expressiveness. In
particular, it excludes situated and embedded systems, whose environments are
physical (real-world), or a combination of virtual and physical. Physical environ-
ments are continuous and analogue; in the case of the real world, they may be
infinite as well. No finite set of shared discrete variables can adequately represent
all possible observations over such environments.

In fact, we believe that it can be shown that message passing is not as
expressive as indirect interaction. That is, any model based on message passing
can be simulated by a model based on indirect interaction. On the other hand,
there exist stigmergic systems not captured by any model based on message
passing.

Another criticism concerns the scalability of direct interaction, especially in
the context of very large systems of very simple agents (Sect. 4.3). Assume that
the size of the system (the number of agents) increases, while the complexity of
each agent remains fixed. By representing the communications within the system
by a graph, we see that this graph must either continue increasing its density
(average number of links adjacent on any single agent) and/or its diameter (av-
erage number of links between any pair of agents). It can be shown that either
of these cases results in a gradual increase in the agents’ cognitive load. Since
the complexity of agents is fixed, the system must eventually reach a crisis point
where it can no longer carry out its job.

Indirect Interaction in Environments for MAS 85

The final criticism is on more aesthetic grounds. Models based on direct
interaction simply fail to explicitly capture the properties of indirect interac-
tion. Indirect interaction has several properties that distinguish it from direct
interaction, such as dynamic binding, anonymity, and asynchrony (Sect. 4.2).
A formalization of indirect interaction must explicitly reflect these properties;
models of interaction as message passing do not.

The Dining Philosophers problem (Sect. 3.3) serves as an illustration. This
problem can be modeled as direct interaction between philosophers and chop-
sticks, as in the original solution; each chop-stick is a process, which communi-
cates with the two philosophers on either side of it. In this problem, however,
chop-sticks are not autonomous computing entities, like philosophers; they are
passive, initiating no action. Their only roles are to reflect the states of the
philosophers next to them. The semantics of the problem are of indirect inter-
action among diners, not direct interaction between diners and utensils.

6 Conclusion

Communication (direct interaction) is not the only type of interaction.Amultitude
of indirect interaction examples exist. Indirect interaction is appropriate for MAS
design, as evidenced by examples in E4MAS research, including cases of agents
interacting via web sites, warehouse-floor transport, and PDA-based coordination
of human activity in museums. We introduced a design strategy, II-MAS, that
uses agents that are much simpler than their environments but that use their
environments to interact as components of highly-adaptive multi-agent systems.

We have shown that indirect interaction via the environment is a distinct
and useful part of multi-agent systems operation, meriting formalization via
definitions and models. The notions of dynamism, persistence, and physical-
ity/virtuality of environments are part of a taxonomy of environments for multi-
agent systems that feature indirect interaction.

In assessing current models of multi-agent interaction, we showed that
message-passing cannot adequately model multi-agent interaction, which in-
cludes both direct and indirect interaction. Therefore, we showed, a model of
multi-agent interaction that is adequate for reasoning about, and providing an
underpinning for, multi-agent systems, cannot limit itself to representing mes-
sage passing (direct interaction), but must explicitly include indirect interaction
within its scope.

New formalisms are required that incorporate indirect interaction explicitly,
supporting the notion of environments as first-class entities in multi-agent sys-
tems, rather than just as transport media. They must also support the notions
of anonymity, asynchrony, locality, non-intentionality, and mobility.

Future research challenges include:

– formalizing multi-agent systems in a way that explicitly incorporates indirect
interaction;

– formally proving the greater expressiveness of models that allow indirect
interaction over those that do not.

86 D. Keil and D. Goldin

References

1. Farhad Arbab. Reo: A Channel-Based Coordination Model for Component Com-
position. CWI Report SEN-0203, 2002.

2. W. Ross Ashby. An Introduction to Cybernetics. University Paperbacks, 1964.
3. Stefania Bandini, Sara Manzoni, and Giuseppe Vizzari. Web Sites as Agents’ Envi-

ronments: General Framework and Applications. In Second International Workshop
on Environments for Multiagent Systems (E4MAS), 2005.

4. Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence: From
Natural to Artificial Systems. Oxford Univ. Press, 1999.

5. Eric Bonabeau and Guy Theraulaz. Swarm Smarts. Scientific American, pages
72–74, March 2000.

6. Edsger Dijkstra. Hierarchical Ordering of Sequential Processes. Acta Inform.,
1:115–138, 1971.

7. Environments for Multi-Agent Systems 2005 (E4MAS).
http://www.cs.kuleuven.ac.be/ distrinet/events/e4mas/2005/.

8. Eugene Eberbach, Dina Goldin, and Peter Wegner. Turing’s Ideas and Models of
Computation. In Christof Teuscher, ed., Alan Turing: Life and Legacy of a Great
Thinker, Springer, 2004.

9. Jacques Ferber. Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. Addison Wesley Longman, 1999.

10. D. Gelernter and N. Carriero. Coordination Languages and Their Significance.
CACM, 35(2):97–107, 1992.

11. Dina Goldin. Persistent Turing Machines as a Model of Interactive Computation.
in: K-D. Schewe and B. Thalheim (Eds.), Foundations of information and knowl-
edge systems, First Int’l Symposium (FoIKS’2000), LNCS 1762, pages 116–135,
2000.

12. Dina Goldin, Scott A. Smolka, Paul Attie, and Elaine Sonderegger. Turing Ma-
chines, Transition Systems, and Interaction. Information and Computation Jour-
nal, 194(2):101–128, Nov. 2004.

13. Dina Goldin and Peter Wegner. The Church-Turing Thesis: Breaking the Myth.
In Proc., CiE 2005, Amsterdam, June 2005 LNCS 3526, Springer, pages 152–168,
2005.

14. C.V. Goldman and S. Zilberstein. Decentralized Control of Cooperative Systems:
Categorization and Complexity Analysis. Journal of Artificial Intelligence Re-
search, 22:143–174, 2004.

15. David Keil and Dina Goldin. Modeling Indirect Interaction in Open Computational
Systems. TAPOCS Workshop, Proc. WET ICE 03, 2003.

16. David Keil and Dina Goldin. Indirect Interaction and Decentralized Coordination.
Extended draft, http://www.cse.uconn.edu/ dqg/papers/indirect.pdf 2004.

17. David Keil and Dina Goldin. Adaptation and Evolution in Dynamic Persistent
Environments. In Proc. FInCo2005, Edinburgh, 2005.

18. James Kennedy and Russell Eberhart. Swarm intelligence. Morgan Kaufman,
2001.

19. Donald E. Knuth. The art of computer programming, Vol. 1: Fundamental algo-
rithms. Addison-Wesley, 1968.

20. Marco Mamei, Franco Zambonelli, and Letizia Leonardi. Distributed Motion Co-
ordination with Co-Fields: A Case Study in Urban Traffic Management. In Pro-
ceedings of the The Sixth International Symposium on Autonomous Decentralized
Systems (ISADS’03), 2003.

Indirect Interaction in Environments for MAS 87

21. Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer Verlag, 1992.

22. Koenraad Mertens and Tom Holvoet. CSAA: A Distributed Ant Algorithm Frame-
work for Constraint Satisfaction. In FLAIRS Conference 2004.

23. Robin Milner. Processes: A Mathematical Model of Computing Agents. H. E.
Rose and J. C. Shepherdson, Eds., Logic Colloquium ’73, North-Holland, 1975.

24. Robin Milner. A Calculus of Communicating Systems. LNCS 92, Springer, 1980.
25. Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
26. Robin Milner. Elements of Interaction. Comm. ACM, 36(1):78–89, 1993.
27. Robin Milner. Communicating and mobile systems: the π-calculus. Cambridge

Univ. Press, 1999.
28. H. Van Dyke Parunak, Sven Brueckner, and John Sauter. Digital pheromone mech-

anisms for coordination of unmanned vehicles. In Proceedings of the first interna-
tional joint conference on Autonomous agents and multiagent systems Bologna,
Italy, 2002.

29. Jean Piaget. Behavior and evolution. Pantheon, 1978.
30. Mitchel Resnick. Turtles, Termites, and Traffic Jams. MIT Press, 1994.
31. Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Addison-Wesley, 1995.
32. Herbert Simon. The Sciences of the Artificial. MIT Press, 1970.
33. Starlogo site at MIT Media Lab. http://starlogo.www.media.mit.edu / people /

starlogo. 2000.
34. Renee Steiner, Gary Leask, and Rym Z. Mili. An Architecture for MAS Simulation

Environments. In E4MAS, 2005.
35. G. Theraulaz and E. Bonabeau. A Brief History of Stigmergy. Artificial Life,

5:97–116, 1999.
36. Alan Turing. On Computable Numbers with an Application to the Entscheidung-

sproblem. Proc. London Math Society, 2(DK: GET PUB):Reprinted in Martin
Davis, Ed., The Undecidable, pp. 173–198, 1936.

37. Paul Valckenaers and Tom Holvoet. The Environment: an Essential Abstraction
for Managing Complexity in MAS-based Manufacturing Control. In E4MAS, 2005.

38. Jan van Leeuwen and Jiri Wiedermann. The Turing machine paradigm in contem-
porary computing. In B. Enquist and W. Schmidt, Eds., Mathematics unlimited –
and beyond, Springer-Verlag, 20, 01, 2001.

39. Mirko Viroli, Andrea Omicini, and Alessandro Ricci. Engineering MAS Environ-
ment with Artifacts. In E4MAS, 2005.

40. Peter Wegner. Why Interaction is More Powerful Than Algorithms. Communica-
tions of the ACM, 40(5), 1997.

41. D. Weyns, H. Parunak, F. Michel, T. Holvoet, and J. Ferber. Environments for
Multiagent Systems: State-of-the-Art and Research Challenges. In Proc., E4MAS,
2004.

42. Danny Weyns, Kurt Schelfthout, and Tom Holvoet. Exploiting a Virtual Environ-
ment in a Real-World Application. In E4MAS, 2005.

43. Danny Weyns, Giuseppe Vizarri, and Tom Holvoet. Environments for Situated
Multi-Agent Systems: Beyond Infrastructure. In E4MAS, 2005.

44. Norbert Wiener. Cybernetics, or control and communication in the animal and the
machine, 2nd Ed. MIT Press, 1961.

45. M. Wooldridge. On the Sources of Complexity in Agent Design. Applied Artificial
Intelligence, 14(7):623–644, 2000.

The Governing Environment

Michael Schumacher1 and Sascha Ossowski2

1 Artificial Intelligence Lab,
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

michael.schumacher@epfl.ch
2 Artificial Intelligence Unit, Universidad del Rey Juan Carlos, Spain

sascha.ossowski@urjc.es

Abstract. Whenever a multiagent system is designed, many dependen-
cies in the system are identified and must be solved in a correct way.
Coordination deals with the management of such dependencies. For that,
two complementary viewpoints can be distinguished: subjective coordina-
tion manages intra-agent aspects while objective coordination essentially
deals with inter-agent aspects. On the basis of this separation of concerns,
the paper discusses the need of infrastructures for objective coordination.
As in usual agent software platforms, this can be done by offering im-
plicit support for objective coordination, by establishing the conditions
necessary for running agent programs and maintaining agent interac-
tions. Other infrastructures such as Electronic Institutions go one step
further and shape the governing aspects of objective coordination. How-
ever, this is usually done through dedicated middle-agents that belong
to the institution. An alternative approach is to transfer the governing
or regulating responsibility from institutional agents to the environment
of a multiagent system. A promising way of doing this is to view the en-
vironment as a rule-based infrastructure that defines reactions to events.
This has the advantage of allowing for the definition of laws that not
only regulate agent interaction (as most work in governed interaction),
but any action within the environment. We illustrate this approach by
several examples in different domains of laws.

1 Introduction

The interest for multi-agent systems (MASs) has grown increasingly in the last
years. These systems are used in a great variety of applications such as process
control, manufacturing, electronic commerce, patient monitoring, or games.
MASs present very attractive means of more naturally understanding, designing
and implementing several classes of complex distributed and concurrent software.
The main reason resides in their unique paradigm of combining populations
of autonomous active entities (agents) within a shared structured entity (the
environment).

An autonomous agent is classically seen as a system situated within and
a part of an environment that senses that environment and acts on it, over
time, in pursuit of its own agenda and so as to effect what it senses in the fu-
ture [13]. This description stresses the importance of the environment as the

D. Weyns, H. Van Dyke Parunak, and F. Michel (Eds.): E4MAS 2005, LNAI 3830, pp. 88–104, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Governing Environment 89

living medium, the condition for an agent to live, or the first entity an agent
interacts with [39,8]. Thus an agent is part of the environment. However, it re-
mains autonomous, so that the environment may not “force” the agent integrity.
Franklin and Graesser’s definition shows that the environment is strongly related
to the notion of embodiment, which refers to the fact that an agent has a “body”
that delineates it from its environment in which the agent is situated. It is in this
environment that an agent senses and acts. The acting of the agent on the envi-
ronment is done autonomously; it directly influences its future sensing, because
the environment is changed by the agent actions.

This view of the importance of the environment originally comes from Behav-
ior Based AI (also named Bottom Up AI), which considers interaction with an en-
vironment as an essential feature for intelligent behavior. In this field, the main
work has been done in systems that interact with a physical environment such
as robots. This has influenced many research efforts within the software agent
community, which deal with logical environments. However, most approaches in
agent research have viewed the environment as something being modelled in the
“minds” of the agents, thus using a minimal and implicit environment that is not
a first-order abstraction, but rather the sum of all data structures within agents
that represent an environment. This is a typical subjective view of the multiagent
system inherited from distributed AI, which contrasts with an objective view that
deals with the system from an external point of view of the agents [33,29].

Whenever a multiagent system is to be implemented and deployed, an under-
lying infrastructure becomes essential [26]. It offers to the MAS basic services to
be used by the agents. Example functionalities are agent communication, nam-
ing or life-cycle management. The abstractions provided by such infrastructures
are essential for agent-oriented software engineering, as they should be as close
as possible to the concepts used for analysis and design.

Today’s infrastructures primarily offer agent-related abstractions for the pro-
gramming of agent architectures using for instance libraries for BDI agents [16],
thus supporting subjective coordination. But they also offer implicit support for
objective coordination (which we consider as enabling aspects), as they establish
the conditions necessary for running agent programs (e.g. life-cycle management)
and for setting the basic interaction means (e.g. message-enabled middleware be-
tween agents). However, current infrastructures have a main drawback. The used
abstractions are not adapted for open systems, where participating agents may
have totally different architectures, goals and interests, thus possibly behaving
in a non-benevolent manner.

An appealing way to exert the necessary level of control over an agent in
a truly open system is through an adequate MAS infrastructure. The type of
services provided by the infrastructure, and the way in which these services are
enacted, limit the set of possible actions (or modify their preconditions and/or
effects). For that, a MAS designer can use a governing infrastructure to structure
and shape the space of (inter-)action within a MAS in an open environment [26].
This governing perspective of objective coordination mainly allows to manage
agent interactions from an external point-of-view. This has the strong advantage

90 M. Schumacher and S. Ossowski

that agents may be defined independently, and that some control is overtaken
externally. In the area of virtual organizations, the Electronic Institutions (EI)
approach [25] does this by defining so-called governors which are middle agents
that mediate all (communicative) actions within a MAS 1. This solution has,
however, important disadvantages. Providing each agent with a governor puts
a heavy computational burden on the infrastructure. But, more importantly,
middle agents do not capture a natural design for the functionality they are
expected to fulfill, i.e. mediation of communication. The governing or regulat-
ing responsibility should be transferred from specialized middle agents to the
environment of a MAS, calling for the environment as a governing infrastruc-
ture. This can be done with the idea of a programmable coordination medium [9],
which essentially defines reactions to events happening in an environment. This
schema has the strong advantage to allow the definition of laws that not only
regulate agent interactions, but also any happening within an environment. The
paper proposes different domains of laws that can be identified with this idea.
Overall, we expect that viewing the environment as a governing infrastructure
dramatically simplifies the design and deployment of open multiagent systems.

The paper is organized as follows. Section 2 introduces objective and subjec-
tive point of views in modelling MASs. On the basis of this separation of con-
cerns, the paper discusses infrastructures for objective coordination in Sect. 3,
elaborating on enabling and governing aspects. Following the idea to transfer
governing responsibility within the environment using a programmable coordina-
tion medium, Sect. 4 presents environment entities and events to be considered
for defining laws as reactions to events. It then lists law domains to be used as
a taxonomy. Section 5 concludes the paper.

2 Objectivity Versus Subjectivity

The interaction between agents is absolutely essential in a MAS, because it
enables the MAS to exist. If agents are not able to interact with one another,
no global behavior in the MAS is possible. One has therefore to model the
interaction setup of the multitude of agents participating in the MAS. If this
is not done, this typically leads to an agent-oriented view of a MAS [7]. This
agent-oriented view models a MAS by describing the intra-agent aspects, such
as the agent’s representation of the world, its beliefs, desires, intentions, and by
neglecting the description of the agent interaction means and of the space where
these interactions take place.

This necessity for a clear identification of the interaction setup in a MAS
naturally calls for a separation between the design of the individual tasks of
each agent and the design of their interactions. This can be done at two different
levels, according to the types of dependencies.

Indeed the modelling of the setup of multiple agents into a MAS leads to the
detection of many dependencies of different nature. On one side, these depen-
dencies rely on the result of the external composition of multiple agents into an
1 All actions that the EI approach accounts for are communicative by nature.

The Governing Environment 91

ensemble; on the other side, they result from the individual or peculiar point of
view of each agent interacting with other agents. Two types of dependencies can
thus be distinguished and, as coordination is defined as managing dependencies
between activities [21], two corresponding types or levels of coordination [33]:

– Agents have subjective dependencies which refer to intra-agent aspects. The
management of these subjective dependencies refers to what we call subjec-
tive coordination. Thus, subjective coordination treats dependencies in an
agent’s model, its perception of the environment.

– A MAS is built by objective dependencies which refer to inter-agent aspects,
namely the configuration of the system in terms of the basic interaction
means, agent generation/destruction and organization of the environment.
We refer to the management of these dependencies as objective coordina-
tion, because these dependencies are external to the agents. Thus, objective
coordination acts directly on the dependencies in an environment.

Subjective coordination is dependent on objective coordination, because the
first is based on and supposes the existence of the second. The mechanisms
that are engaged to ensure subjective coordination must indeed have access to
the mechanisms for objective coordination. If this is not the case, no subjective
coordination is possible at all. This does not mean that objective coordination
belongs to the intra-agent view, but only that the access mechanisms have a
subjective expression in the agent. This is essentially the case for mechanisms
like sending or receiving information.

Not differentiating the two levels of coordination leads to MASs that resolve
objective coordination with subjective coordination means, i.e. by using intra-
agent aspects for describing system configurations. For instance, a MAS intended
at modelling the hierarchy in an organization would model this hierarchy inter-
nally in each agent by means of knowledge representation of the hierarchy, and
would not describe it by establishing the communication flows that represent it.

2.1 Subjective Coordination

We distinguish two types of subjective coordination: explicit and implicit sub-
jective coordination. They differentiate themselves in the explicit or implicit
treatment of the management of subjective dependencies.

The research in distributed artificial intelligence (DAI) has proposed several
coordination techniques [20,18,30] that deal with explicit subjective coordina-
tion. These techniques typically consider coordination as the process by which
an agent reasons about its local action and the (anticipated) actions of others
to try and ensure the community acts in a coherent manner [20]. Thus, these
techniques are qualified as subjective coordination, because they try to resolve
subjective dependencies by means of intra-agent structures that often involve
high-level mentalistic notions and appropriate protocols. We characterize these
techniques as explicit, because they explicitly handle coordination.

Agents may also coordinate themselves implicitly, without having explicit
mechanisms of coordination. This may be, for instance, the case in the framework

92 M. Schumacher and S. Ossowski

of collective robotics [3,22,23], in which robots act on the base of the result of
the work of other robots. Thus, this result, which is locally perceived through
the sensors, allows to resolve a subjective dependency, namely the necessity to
sense a specific information in order to act. This kind of coordination, which is
also named stigmergic coordination, literally means an incitement to work by the
product of the work [3].

2.2 Objective Coordination

Objective coordination is mainly concerned with the organization of the world
of a MAS. This is achieved in two ways: i) by describing how the environment
is organized, and ii) by handling the agent interactions. In the following, we
address these two points.

The organization of the environment varies according to the space the MAS
wants to integrate. We thus propose to distinguish between implicit and explicit
environment organizations. An implicit organization does not explicitly model
the environment, because it is given or imposed by the underlying logical struc-
ture or space organization on which a MAS evolves. This is, for instance, the case
for network-aware agents roaming on the World Wide Web, where the environ-
ment is structured by the nodes of the network. An explicit organization, how-
ever, establishes a model of an environment that does not necessarily reflect the
intended logical structure. This can be done by realizing an approximation of the
target. When, for instance, one wants to simulate a continuous physical space, he
will not be able to keep the continuity and will have to render the space discrete.

More importantly, the environment allows the arising of the interactions be-
tween the agents. Handling agent interactions asks for the description of the in-
teractions between an agent and its environment, and the interactions between
the agent themselves. As the environment also has a container function, it can be
used to interact. Indeed, an agent has a relation with its environment by means
of its perception. Furthermore, it can influence the state of its environment with
specific actions. The interaction with the environment can then be understood
and used to interact: all information is transmitted within the environment.
Interaction thus becomes an action that changes the state of the environment.

Consider, for instance, the case of an insect-like robot dispersing in the envi-
ronment information similar to pheromone. This information can be sensed by
another robot that notices it as a trace of the roaming of the first agent.

In summary, we consider that agent interaction is always dealt through the
environment. This is even the case in usual message-passing mechanisms that
use agent-communication languages. We thus consider objective coordination as
the way to organize the environment.

3 Infrastructures for Objective Coordination

Agent software platforms are a key element for the effective implementation and
deployment of multiagent systems, as they provide the “interface” between the
agents and their environment. They can be seen as an infrastructure for MAS,

The Governing Environment 93

providing basic resources and critical services to the agents, thus shaping their
environment as part of a MAS 2. Such MAS infrastructures are of foremost im-
portance for Agent-Oriented Software Engineering, as the abstractions provided
by them need to be as close as possible to the concepts used for analysis and design.

Any infrastructure for MAS needs to provide some services to allow agents
to effectively interact, either directly by means of message-passing, or indirectly
by leaving “messages” in shared data containers. Therefore, it is obvious that
coordination in a multiagent system ultimately relies on the services provided
by the infrastructure.

Today’s infrastructures essentially provide (different levels of) support for
programming a collection of individual agents in a multiagent world. So, from
this perspective, they primarily render a certain level of support for subjective
coordination. The more powerful the agent-related abstractions provided by the
infrastructure, the higher their level of support for (and potential influence on)
the instrumentation of subjective coordination mechanisms. For instance, if an
infrastructure offers libraries for the implementation of BDI-type agents [16], the
mechanisms for subjectively detecting dependencies, and reacting to them, will
most probably be realized in these terms.

Although this is usually not made explicit at a conceptual level, agent plat-
forms such as Jade[4] also provide some implicit support for objective coordina-
tion as they establish the conditions necessary for running agent programs and
maintaining agent interactions. Other infrastructures, such as RICA-J [34], in-
crease this level of support, as they provide the abstractions (and their software
counterparts) to structure the space of interaction in a MAS. Finally, infrastruc-
tures based on the notion of Virtual Organizations or Electronic Institutions
shape the governing aspects of objective coordination. In the sequel, we will
elaborate on these points.

3.1 Enabling Aspects

Most current MAS platforms constitute essentially enabling infrastructures, as
they provide agents with the means to interoperate. The services provided by
FIPA-compliant infrastructures, for instance, refer to services such as agent
communication, security, naming, location, etc., which are necessary precon-
ditions that make it possible for agents to “live”, “coexist”, and interact within
a MAS [26]. Other aspects relevant for achieving a basic level of objective coor-
dination, such as the management of concurrency, are usually left to the agent
designer. In essence, all but the most basic functionalities are to be dealt with
subjectively, from the point of view of the agents (or: agent programmers).

The support for objective coordination by enabling infrastructures is not only
determined by the functionality of the services that enable the co-existence of
agents in a MAS. It is also affected by the conceptual abstractions in terms of
2 The notion of infrastructure is fundamental for complex systems in general, not only

in computer science and engineering, but also in the context of organizational, polit-
ical, economical and social sciences [26]. Agent software platforms can be conceived
as embodiments of this concept in the multiagent domain.

94 M. Schumacher and S. Ossowski

which they are modelled and/or accessed. By shaping these abstractions one
exerts influence over the way in which individual agents are designed and de-
ployed. There is a growing awareness that organizational abstractions (types of
roles, interactions, etc.) are adequate candidates to this respect. In fact, it is
tempting to maintain a tight coupling between a MAS, and the relevant features
of the (human) organization that it models, during the whole design process.
Several authors have put forward conceptual frameworks that conceive MAS in
organizational terms [11,19,35].

Software frameworks that directly support such models shall still be con-
ceived as enabling infrastructures, as they provide a basic set of computational
abstractions that agent may make use of. Still, they provide an increased level of
support for objective coordination. This is not only true because these compu-
tational abstractions are coarser grained. Infrastructures such as AGRE [12] or
RICA-J [34] also allow for an “extension” of the infrastructure, e.g. by creating
new types of interactions as a specialization of others, and thus providing the
means for customizing basic services.

Agent programmers may benefit from using the computational abstractions
provided by the infrastructure in order to simplify subjective coordination mech-
anisms, and the agent programs that instrument it. However, notice that agent
programmers are not forced to do so – they may still decide to directly act upon
the outside world instead of or use other lower-level services.

3.2 Governing Aspects

As of today, MAS infrastructures exploit only a minimal part of the potential of
organizational abstractions. This is especially true with respect to the coercive
facets of these abstractions. However, the increasing complexity and articulation
of MAS application scenarios call for a more effective engineering support. In
particular, designs must account for increased levels of openness (not only with
respect to semantic interoperability but also, and maybe even more importantly,
respecting the spectrum of different agent interests and goals), and decreased
levels of predictability of (and control over) agent behavior. The former part
of this requirement is exemplified by the work outlined in [30] where different
types of behavioral restrictions (limitations to the set of possible actions of an
agent in a given state of the world), operationalized in terms of “prohibitions”
and “permissions”, are used to bias the (macro-level) outcome of the interaction
of autonomous (self-interested) “problem-solving” agents in a desired direction.
However, the approach still assumes the possibility to “hand-wire” compliance
with these restrictions into the agents’ behavior strategies.

An appealing way to exert the necessary level of control over an agent in
a truly open system (without relying on unrealistic assumptions on agent be-
haviors that limit their autonomy) is through an adequate definition of the
MAS infrastructure. The type of services provided by the infrastructure (and/or
the infrastructure agents that offer them), and the way in which these ser-
vices are enacted, limit the set of possible actions (or just modify their out-
come). Thus, such governing infrastructures can be used by the MAS designer to

The Governing Environment 95

structure and shape the space of (inter-)action within a MAS in an open envi-
ronment [26].

Again, from the standpoint of an engineer concerned with designing mech-
anisms for objective coordination, infrastructures need to incorporate suitable
abstractions for the governance of interaction. Coercive organizational abstrac-
tions, especially the different conceptualizations of the notion of norms or , are
of foremost importance here. Upon the normative background of a MAS, the
agents’ social actions create (social) facts and, in turn, these facts constrain (or,
at least, modify the outcome of) future behavior options. From this perspective,
governing MAS infrastructures refer to the software that embodies and enacts
the instititional aspects of Virtual Organizations.

Electronic Institutions (EI) [25], conceived as a particular instantiation of
a Virtual Organizations, are of particular interest to this respect. EIs focus on
the dialogical aspects of open MAS, and provide abstractions to shape the in-
teractions of the agents participating in it. Agents play different roles in the
(sub-)protocols that, together with additional rules of behavior, determine the
legal sequences of illocutions that may arise within a particular instance of a
scene. Scenes, in turn, are interconnected and synchronized by means of transi-
tions within a performative structure. Instances of EI abstractions are meant to
be of both descriptive and coercive nature. Specific institutional agents, called
governors, assure that the latter is effectively implemented: in EIs, all relevant
(communicative) action of agents is mediated through the corresponding gov-
ernors. In fact, software tools that support the implementation of EIs [10] are
(among the few existing) examples of governing MAS infrastructures.

To provide each agent with a governor puts a heavy computational burden
on the infrastructure. An alternative approach is to incorporate the governance
functionality into the infrastructure. This approach allows for a much more nat-
ural modelling of what the governors are expected to fulfill. It is then the proper
infrastructure services that make sure that agent (inter-)actions are compliant
with institutional norms. For instance, a governing infrastructure’s basic com-
munication service may filter out certain messages or automatically add context
information to others. From this perspective, norms or laws are nothing but
means to configure and customize the behavior of infrastructure services. As
such, they can be conceived as the key component to instil objective coordina-
tion in open MAS.

4 The Environment as a Governing Infrastructure

To capture the idea of norms and laws in MASs, we propose to consider the
environment as a regulating system. This is best shown by important elements
of a definition of environment that were identified at the plenary session of
E4MAS 20053:

– The environment is a first-class entity [39]. It should be taken into account
since the very first phase of modelling.

3 http://www.cs.kuleuven.ac.be/∼distrinet/events/e4mas/

96 M. Schumacher and S. Ossowski

– The environment provides the situation for the existence of the agents and
the interactions within the MAS. The situation mainly significates the con-
ditions of existence, i.e. creation/destruction mechanisms, supplier and or-
ganization of the living space, and time management.

– The environment regulates. This regulation can be weak or strong, in the
sense that the environment may control weakly or strongly what happens
in and through it. This may be done by control mechanisms that cannot
change at runtime, or by some laws that may be adapted at runtime.

Those descriptive elements of a MAS environment belong to the design of
a MAS application. Therefore, the environment should be directly supported
as an infrastructure. And for a MAS to provide law definitions, its supporting
infrastructure should include rule-based mechanisms. Among research efforts
that have tackled governed interaction [24,9,17,37,2], a programmable coordi-
nation medium [9] is a good candidate to realize an environment as a governing
infrastructure.

4.1 Programmable Coordination Medium

Reactive coordination models [6,31] allow reactions associated to specific com-
munication events to be programmed, leading to the notion of programmable
coordination medium [9]. For that, this family of coordination models integrates
an event mechanism into shared data space models, which show to be very use-
ful to capture the idea of laws or norms in environments. This can be done by
considering a tuple space as being reactive in the sense that the space can react
to communication events rather than to the communication state changes only.
Thus, from the point of view of the coordination medium, the observability is
shifted from the tuples to the communication operations over the tuples. When
a communication operation is executed, a reaction catching the event produced
atomically executes a sequence of operations which usually have access both to
the space and the information associated with the event. The idea of a program-
mable medium can be found for instance in TuCSoN (Tuple Centers Spread
Over Networks) [27] [28].

Law-Governed Linda [24] is also a model that follows the notion of pro-
grammable media. The basic motivation of Law-Governed Linda is the in-
herent security problems of Linda [15,5]. In order to control each exchange of
tuples through the tuple space, the model forces every process to adopt specific
laws that control each exchange of tuples through the tuple space. For achieving
this goal, Law-Governed Linda attaches a controller to every process. Each
controller, which is in charge of regulating the exchange of tuples, has a copy of
the law, and only allows a communication if it conforms to the law. This law reg-
ulates the occurrence of so-called controlled events that occur at the boundary
between a process and the medium. It determines the effect of an event using a
prescription, which is the ruling of the law, realized with a sequence of primitive
operations. An example for the ruling of the law controlling an out could be to
transform the corresponding tuple by concatenating some useful information.

The Governing Environment 97

RESOURCE

SERVICESPACE AGENT
COMMUNICATION
MEDIUM

Communication
event

Time
event

Creation
event

Destruction
event

Access
event

Organization
event

Physical
event

Event
launch

event(type, source, goal, data)

ACTION ONCTION ON

Fig. 1. Law definitions on events

4.2 Mechanisms for Environment Laws

Programmable coordination media can elegantly support the programming of
laws regulating the environment in a MAS. The main reason is that their under-
lying mechanism can be used to support regulation not only of interaction, but
also of any action in the environment. We therefore propose to extend their basic
scheme to support ruled environment systems, i.e. which define laws as reactions
to events. These reactions apply actions on environment entities (Fig. 1). In or-
der to support such a definition of laws, the MAS infrastructure should thus be
able to define as first-class entities all environment entities, all events happening
in an environment, and law mechanisms.

We consider as being part of the environment the following entities:

– Resources are passive data being shared within the environment. Conditions
of access and modifications are defined by the environment.

– Services offer functionalities within the environment, which again control
their acting and the access of other entities to them. Services are different
from resources, because they are activated and are not purely passive as data
resources.

– Spaces are a logical organization of agent groups, resources and services. Fur-
thermore, they make locality and localization possible, for instance offering
encapsulation of events (e.g. for catching them) or allowing agents to move
from one place to the other. Spaces are the most straightforward entity that
make situatedness4 of agents possible.

4 We refer with this notion to the function of the environment to provide the situation.

98 M. Schumacher and S. Ossowski

– Communication medium are abstractions that allow interaction between
agents. They can be mainly classified as point-to-point connections, using
some message-based middleware (as in Jade [4] or explicit communication
canals (as in IWIM [1]); or shared-data interaction where a blackboard is
used to publish or retrieve information.

When considering agents from external point of view (i.e. as embodied en-
tities), laws may also be applied on them. Consider for instance laws that have
influence on agent creation/destruction.

As Fig. 1 shows, an event is a specific data that is launched at a specific
moment within the environment and that may be catched to create a reaction
to it. An event may include information such as the type (of event), the source
(entity), the goal (entity) and a specific data.

Table 1. Events

Communication Access to communication means (get, put, ...),
configuration changes, communication breaks, ...

Time Time period change, time exceeded, ...
Creation Creation, re-launch or arrival of entities

Destruction Destruction, pause or departure of entities
Access Access to the entities

Organization Density (population within a space), location change
Event Launch At each event

Different types of events can be differentiated in a MAS (see also Tab. 1):

– Communication events belong to the most important one, because they give
information on all access to communication means. They provide therefore
the main source for laws. Examples are access to communication means (get,
put, ...), configuration changes, or communication breaks.

– Time events are straightforward. Examples are time period change or time
excess.

– Creation or destruction events of all kind of entities. These events may be
general or specific to some types of agents or resources. Examples are cre-
ation, re-launch or arrival of entities in a specific space.

– Access events are launched whenever a specified entity is accessed.
– Organization events are mainly related to the space. For instance, they can

be fired whenever a specific agent population density is reached or there is
a location change of an agent.

– Event launch capture the idea that every event (whatever its type) is itself
an event, which may be useful for logs.

The set of events tries to be as general as possible. We estimate that it should
be part of an infrastructure offering environment laws for MASs. At a higher
abstraction, application specific events are needed in each MAS application.

The Governing Environment 99

4.3 Law Domains

On the basis of the regulation capacity of a MAS infrastructure, a catalogue
of possible laws helps the definition of the environment responsibilities in each
case. We therefore propose a categorization that is based on events. Actually,
each kind of event defines different types of laws. We will explain one by one the
law domains. This list should be further completed.

– Security laws (Fig. 2a) are mainly related to interaction between agents
and accesses to resources or services. They can change communicated data
for encryption; or they can add some identification information. Access to
resources/services may be restricted by some UNIX-like rights. Communica-
tion may be forbidden to specific agents.

– Communication laws (Fig. 2b) regulate interaction between agents at two
levels. They can change transmitted data (such as cast data if it is of a

by new agent arrival
create a help agent and
a personalized resource

new
agent

help
agent

new
agent by overpopulation migrate newcomers

Resource

c. Organization laws

encrypt all data from
blue agents

by creation set
access rights
rwx-rwx-rwx

Resource

a. Security laws

when data is from
specific type, cast it

Add time information
to message

b. Communication laws

Fig. 2. Example of law domains: a. security laws: i) change resource access rights;
ii) or, for all agents of a special type, encrypt communicated data; b. communication
laws: i) When the data is from a specific type, cast it to another type; ii) or add time
information to all messages in the space; c. organization laws: i) if population exceeds
a specific number of agents, migrate newcomers to an alternative space; ii) or, at a new
agent arrival, create a help agent and corresponding personalized resource information

100 M. Schumacher and S. Ossowski

When space timeslice is
over, serialize the space

Space
Time:
03:40

e. Historical laws

when agent
time is over
restrict access
rights
rwx --- ---

Space Time: 03:40

00:00

when resource
time is over,
destruct
resource

10:01

Resource

00:20

Se
rv

ice

d. Time laws

a d iu n b x n blk j a sd k fjn x v a a s lk fja w k la s fj y lk v
aölk s lk a sa sa fu lk j öa lk s fj w lk ja s k ja s flk ja k j
a lsd k j a sd flk ja sd f lk fk jaö jaök d fjk

By each
event,
log it

LOG
Se

rv
ice

Fig. 3. Example of law domains: a. time laws: i) when agent time is over, restrict access
rights to a specific service; ii) or when resource time is over, destruct the resource; b.
historical laws: i) By each event, log it (creation, destruction, arrival, departure, etc.);
ii) When space timeslice is over, serialize the space

specific type, or add time information), or filter it out. They can also create,
destruct or change new communication means, for instance new channels
between agents.

– Organization laws (Fig. 2c) regulate space populations. They may be applied
on agents or on resources/services. Examples are: i) if population exceeds
a specific number of agents, migrate newcomers to an alternative space. ii)
at a new agent arrival, create a help agent and corresponding personalized
resource information.

– Time laws (Fig. 3d) influence entities at specific time events. Examples are:
i) When an agent’s time is over, restrict its access to resources and services;
ii) When a resource time is over, destruct it.

– Historical laws (Fig. 3e) provide functionalities for loging and serializing
spaces. Examples are: i) by each event, log it (creation, destruction, arrival,
departure, etc.); ii) When space timeslice is over, serialize the space.

5 Conclusion

Whenever a MAS is to be designed and implemented, dependencies are identified
and must be handled in a coherent manner. Subjective coordination solves those
raised from intra-agent aspects. Objective coordination, however, manages those
that are related to inter-agent aspects. The environment, as a first-class entity,
is the main place for objective coordination.

A MAS should both tackle subjective and objective coordination. For that,
the use of an adequate infrastructure is essential. Indeed, in order to support im-
plementation and deployment, MAS infrastructures play a central role, because
they enable agent existence and interoperability. Usual agent software platforms
provide a basic infrastructure for MAS by shaping the enabling aspects for ob-
jective coordination (e.g. middleware services for agent communication). Other

The Governing Environment 101

infrastructures such as Electronic Institutions go one step beyond by governing
agent interactions, which is particularly relevant in open systems where the de-
signer has limited or no control of the internal dynamics of agents. Electronic
Institutions make use of institutional middle agents that assure compliance with
communication laws. Still, if the infrastructure become the agents’ only means
to access the environment, then all types of relevant actions can be regulated
directly by the infrastructure. In a nutshell: the environment is conceived as a
governing infrastructure.

Among research efforts that have tackled governed interaction [24,9,17,37,2],
a programmable coordination medium [9] is a good candidate to realize an en-
vironment as a governing infrastructure. The reason is its basic functionality
to define reactions to environment events. This has the advantage to cope with
other aspects as “only” ruling agent interactions. Laws become a general tool to
describe in high-level terms any reactions to events. Thus, more complex inner
dynamicity of the environment can be expressed and controlled by environment
laws. This is shown by the different proposed domains of laws.

We expect future infrastructures to integrate means for supporting environ-
ment laws. For that, several issues can be considered. The first one is related to
the expression of laws. It is an advantage to have a language that allows a higher-
level law expression [36,14]. In some cases business rules such as Drools5 may
offer the sufficient functionality. But additionally, some applications in open sys-
tems would benefit to let their agents inspect the rules in order to adapt their own
behavior. An agent with special rights may even change a law at runtime [32].
This may be achieved with an interpreter for the law language or through specific
law objects that apply on environment entities.

Acknowledgments

This paper reports on work that has been partially supported by the Spanish
Ministry of Education and Science (MEC) under grant TIC2003-08763-C02-02.

References

1. F. Arbab. Coordination of Massively Concurrent Activities. Technical report, CWI,
Computer Science Department, Amsterdam, The Netherlands, 1995. CS-R9565.

2. S. Bandini, S. Manzoni, and G. Vizzari. A spatially dependent communication
model for ubiquitous systems. In Weyns et al. [38], pages 74–90.

3. R. Beckers, O.E. Holland, and J.L. Deneubourg. From local actions to global
tasks: stigmergy and collective robotics. In R.A. Brooks and P. Maes, editors,
Fourth Workshop on Artificial Life, Boston, MA, USA, 1994. MIT Press.

4. F. Bellifemine, A. Poggi, and G. Rimassa. JADE – a FIPA-compliant agent frame-
work. In 4th International Conference and Exhibition on The Practical Application
of Intelligent Agents and Multi-Agent Technology (PAAM’99), pages 97–108, April
1999.

5 http://drools.org

102 M. Schumacher and S. Ossowski

5. N. Carriero and D. Gelernter. Linda in Context. Communications of the ACM,
32(4):444–458, 1989.

6. N. Carriero and D. Gelernter. Coordination Languages and Their Significance.
Communications of the ACM, 35(2):97–107, February 1992.

7. P. Ciancarini, A. Omicini, and F. Zambonelli. Multiagent engineering: the coor-
dination viewpoint. In J. R. Nicholas and Y. Lespérance, editors, Proceedings of
the 6th International Workshop on Agent Theories, Architectures, and Languages
(ATAL’99), pages 327–333, Orlando (FL), July 15–17 1999.

8. D. Weyns and H. Van Dyke Parunak and F. Michel and T. Holvoet and J. Ferber.
Environments for Multiagent Systems, State-of-the-art and Research Challenges.
In Danny Weyns, H. Van Dyke Parunak, and Fabien Michel, editors, Environment
for Multi-Agent Systems - Post-proceedings of the First International Workshop on
Environments for Multiagent Systems, volume 3374 of Lecture Notes in Computer
Science. Springer Verlag, 2005.

9. E. Denti, A. Natali, and A. Omicini. Programmable Coordination Media. In
D. Garlan and D. Le Metayer, editors, Proceedings of the Second International Con-
ference on Coordination Models, Languages and Applications (Coordination’97),
number 1282 in LNCS, pages 274–288. Springer Verlag, September 1997.

10. Marc Esteva, Bruno Rosell, Juan A. Rodŕıguez-Aguilar, and Josep Ll. Arcos.
AMELI: An agent-based middleware for electronic institutions. In Proceedings of
the Third International Joint Conference on Autonomous Agents and Multiagent
Systems, volume 1, pages 236–243, 2004.

11. J. Ferber and O. Gutknecht. A meta-model for the analysis of organizations in
multi-agent systems. In Y. Demazeau, editor, ICMAS’98, pages 128–135. IEEE
Press, 1998.

12. J. Ferber, F. Michel, and J.-A. Báez-Barranco. Agre: Integrating environments
with organizations. In Weyns et al. [38], pages 48–56.

13. S. Franklin and A. Graesser. Is it an Agent or just a Program? A Taxonomy for
Autonomous Agents. In J.P. Muller, M.J. Wooldridge, and N.R. Jennings, editors,
Proceedings of ECAI’96 Workshop (ATAL). Intelligent Agents III. Agent Theories,
Architectures, and Languages, number 1193 in LNAI, pages 21–35, August 1996.

14. A. Garcia-Camino, P. Noriega, and J. A. Rodriguez-Aguilar. Implementing norms
in electronic institutions. In AAMAS ’05: Proceedings of the fourth international
joint conference on Autonomous agents and multiagent systems, pages 667–673,
New York, NY, USA, 2005. ACM Press.

15. D. Gelernter. Generative Communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, 1985.

16. M. P. Georgeff and A. S. Rao. The Semantics of Intention Maintenance for Ra-
tional Agents. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), number 1202 in LNAI, pages 704–710, 1995.

17. A. Gouaich, F. Michel, and Y. Guiraud. Mic: A deployment environment for
autonomous agents. In Weyns et al. [38], pages 109–126.

18. L. Lee H.S. Nwana and N.R. Jennings. Co-ordination in Multi-Agent Systems. In
H. S. Nwana and N. Azarmi, editors, Software Agents and Soft Computing, number
1198 in LNAI. Springer Verlag, 1997.

19. J. Fred Hübner, J. Simão Sichman, and O. Boissier. Using the moise+ for a
cooperative framework of mas reorganisation. In Advances in Artificial Intelligence
- SBIA 2004, pages 506–515, 2004.

20. N.R. Jennings. Coordination Techniques for Distributed Artificial Intelligence. In
G.M.P. O’Hare and N.R. Jennings, editors, Foundations of Distributed Artificial.
John Wiley and Sons, 1996.

The Governing Environment 103

21. T.W. Malone and K. Crowston. The Interdisciplinary Study of Coordination. ACM
Computing Surveys, 26(1):87–119, March 1994.

22. A. Martinoli and F. Mondada. Collective and Cooperative Group Behaviours:
Biologically Inspired Experiments in Robotics. In Proceedings of the Fourth Sym-
posium on Experimental Robotics ISER-95, Stanford, USA, June 30- July 2 1995.

23. M.J. Mataric. From Local Interactions to Collective Intelligence. In L. Steels,
editor, The Biology and Technology of Intelligent Autonomous Agents, pages 275–
295. NATO ASI series, Hillsdale, NJ, USA, 1995.

24. N.H. Minsky and J. Leichter. Law-Governed Linda as a Coordination Model. In
Proceedings of the ECCOP Workshop on Models and Languages for Coordination
of Parallelism and Distribution, LNCS, Berlin, 1994. Springer Verlag.

25. P. Noriega and C. Sierra. Electronic institutions: Future trends and challenges. In
Matthias Klusch, Sascha Ossowski, and Onn Shehory, editors, Cooperative Infor-
mation Agents VI, volume 2446 of Lecture Notes in Computer Science. Springer
Verlag, 2002. 6th International Workshop (CIA 2002), Madrid, Spain, September
18-20, 2002. Proceedings.

26. A. Omicini, S. Ossowski, and A. Ricci. Coordination infrastructures in the engineer-
ing of multiagent systems. In Federico Bergenti, Marie-Pierre Gleizes, and Franco
Zambonelli, editors, Methodologies and Software Engineering for Agent Systems:
The Agent-Oriented Software Engineering Handbook, chapter 14, pages 273–296.
Kluwer Academic Publishers, June 2004.

27. A. Omicini and F. Zambonelli. TuCSoN: a Coordination Model for Mobile Agents.
In Proceedings of the First Workshop on Innovative Internet Information Systems,
pages 183–190, Pisa, Italy, June 1998.

28. A. Omicini and F. Zambonelli. Tuple Centres for the Coordination of Inter-
net Agents. In Proceedings of Fourteen ACM Symposium on Applied Comput-
ing (SAC’99). Special Track on Coordination, Languages and Applications, pages
183–190, San Antonio, Texas, USA, February 28 - March 2 1999. ACM Press.

29. Andrea Omicini and Sascha Ossowski. Objective versus subjective coordina-
tion in the engineering of agent systems. In Matthias Klusch, Sonia Bergam-
aschi, Peter Edwards, and Paolo Petta, editors, Intelligent Information Agents:
An AgentLink Perspective, volume 2586 of LNAI: State-of-the-Art Survey, pages
179–202. Springer-Verlag, March 2003.

30. S. Ossowski. Co-ordination in Artificial Agent Societies – Social Structure and
Its Implications for Autonomous Problem-Solving Agents. Number 1535 in LNAI.
Springer Verlag, 1999.

31. G.A. Papadopoulos and F. Arbab. Coordination Models and Languages. In
M. Zelkowitz, editor, Advances in Computers, The Engineering of Large Systems,
volume 46. Academic Press, August 1998.

32. A. Ricci, A. Omicini, and E. Denti. Activity Theory as a framework for MAS
coordination. In Paolo Petta, Robert Tolksdorf, and Franco Zambonelli, editors,
Engineering Societies in the Agents World III, volume 2577 of LNCS, pages 96–110.
Springer-Verlag, April 2003. 3rd International Workshop (ESAW 2002), Madrid,
Spain, 16–17 September 2002. Revised Papers.

33. M. Schumacher. Objective Coordination in Multi-Agent System Engineering - De-
sign and Implementation. Number 2039 in LNAI. Springer Verlag, 2001.

34. J. M. Serrano, S. Ossowski, and S. Saugar. Reusability issues in the instrumentation
of agent interactions. In Third International Workshop on Programming Multi-
Agent Systems: Languages and Tools (ProMAS’05), Utrecht, Jul 2005.

104 M. Schumacher and S. Ossowski

35. J.M. Serrano, S. Ossowski, and A. Fernández. The pragmatics of software agents
– analysis and design of agent communication languages. In Klusch et al., editor,
Intelligent Information Agents – The AgentLink Perspective. Springer-Verlag, 2003.

36. J. Vazquez-Salceda. The Role of Norms and Electronic Institutions in Multi-
Agent Systems. Whitestein Series in Software Agent Technologies. Springer-Verlag,
Berlin, 2004.

37. D. Weyns and T. Holvoet. A formal model for situated multi-agent systems. Fun-
dam. Inform., 63(2-3):125–158, 2004.

38. D. Weyns, H. V. D. Parunak, and F. Michel, editors. Environments for Multi-Agent
Systems, First International Workshop, E4MAS 2004, New York, NY, USA, July
19, 2004, Revised Selected Papers, volume 3374 of Lecture Notes in Computer
Science. Springer, 2005.

39. D. Weyns, M. Schumacher, A. Ricci, M. Viroli, and T. Holvoet. Environments for
Multiagent Systems. Knowledge Engineering Review, 2005. to appear.

D. Weyns, H. Van Dyke Parunak, and F. Michel (Eds.): E4MAS 2005, LNAI 3830, pp. 105 – 120, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Enriching a MAS Environment with Institutional
Services

Andreia Malucelli1,2, Henrique Lopes Cardoso1, and Eugénio Oliveira1

1 LIACC – NIAD&R, Faculty of Engineering, University of Porto,
R. Dr. Roberto Frias, 4200-465 Porto, Portugal

2 PUCPR – Pontifical Catholic University of Paraná,
R. Imaculada Conceição, 1155, 80215-901 Curitiba PR, Brazil

{malu, hlc, eco}@fe.up.pt

Abstract. Most environments for multi-agent systems limit themselves to
providing message transport and white/yellow page services. While these are
generic facilities, in some domains other services are necessary, which may
map real-world services provided by institutions. The Electronic Institution
concept represents the virtual counterpart of real-world institutions, and one of
its benefits is to provide a regulated and trustful environment by enforcing
norms and providing specific institutional services. This paper presents some of
such institutional services. Ontology-based services are provided to assist agent
interaction, making the establishment of business agreements more efficient.
After the establishment of an agreement through an appropriate negotiation
process, it is necessary to verify the execution of the resulting contract. For this,
we introduce an institutional normative environment based on the concept of
institutional reality and norms.

1 Introduction

Multi-agent systems (MAS) applications include two different kinds of approaches.
Some problems require system architectures including cooperative agents developed so
as to accomplish an overall goal. On the contrary, in other situations agents may
represent independent self-interested entities, with no presupposed cooperation besides
mere interaction efforts. While the former types of problems may be addressed through
a centralized design, the latter comprise open environments where agents interact and
may, through negotiation, establish further cooperation commitments.

Although decentralized and dynamic systems are much more appealing, they must
be handled with hybrid approaches. A minimum set of requirements is necessary to
allow for heterogeneous and independently developed agents to successfully interact.
One way of achieving such a common milieu is by defining communication
standards, such as those proposed by FIPA [13], which have been implemented in
several agent development platforms, such as JADE [18]. However, in terms of
agent’s interaction, such frameworks typically limit themselves to providing message
transport and white/yellow page services [31].

106 A. Malucelli, H.L. Cardoso, and E. Oliveira

This paper describes a set of additional services – provided in an Electronic
Institution (EI) framework – that facilitate agent interaction enabling the
establishment of a normative environment.

Our background scenario is the domain of e-business automation, comprising not
only the use of information gathering and filtering agents but also the establishment
and operation of business relationships. Furthermore, we are interested in the process
of Virtual Organization (VO) formation and operation, through which agents
representing different business units or enterprises come together to address new
market opportunities by combining skills, resources, risks and finances no single
partner can alone fulfill [10]. In order to be trustful a VO needs to be regulated by
appropriate norms.

One of the key factors influencing the adoption of agent-based approaches in real-
world business scenarios is trust. When attempting to automate the creation and
operation of business relationships, the behavior of agents must be made predictable,
by creating a regulated environment that enforces agents’ commitments. The notion
of an EI [9, 20] is proposed as a means to provide such a regulated and trustable
environment, by enforcing norms and providing specific services.

One of the topics presented in this paper is the ontology-based services, which are
important when addressing open environments, that is, situations in which a
centralized design is neither possible nor desirable. Such services are also proposed
by FIPA, although most MAS platforms seem to ignore them. In our EI environment,
such services are provided with the intent of enabling the utilization of negotiation
protocols by agents using different domain ontologies.

A protocol for negotiating VO formation can be found in [28]. This protocol is
used in an institutional negotiation mediation service. A successful negotiation
process must result in an explicit contract that can be monitored. We describe the role
of the EI in providing a normative environment that can be used as a means to verify
agents’ compliance with their established commitments. The EI acts as a trustable
third-party providing such a monitoring and enforcement service.

The rest of the paper is organized as follows. Section 2 details ontology-based
services, describing the integration of JADE and OWL. Moreover, it presents an
ontology interaction protocol based on the contract-net protocol. In section 3 we
explore the notion of an institutional normative environment. We present our
approach including the representation of institutional reality and norms, which are
monitored within the environment. Section 4 concludes the paper.

2 Institutional Ontology-Based Services

The Electronic Institution (EI) concept represents the virtual counterpart of real-world
institutions, and one of its benefits is to provide institutional services. Besides
enforcing norms, institutional services should be provided to assist the coordination
efforts between agents using heterogeneous domain ontologies which, representing
real-world entities, interact with the aim of establishing business relationships. The
ontology-based services proposed and implemented are essential to support agent
interaction (suppliers and customers) as a coordination framework, making the
establishment of business agreements more efficient.

 Enriching a MAS Environment with Institutional Services 107

We have created a set of services (ontology-based services) embedded in the
environment in order to ensure an effective, meaningful negotiation. The provided
services are [23]: (i) currency conversion service, (ii) unit measure conversion
service, and (iii) matching terms service.

The currency conversion service may be useful in the calculation of prices when
agents are dealing with different currencies. Similarly, the unit measure conversion
service may be useful when agents are dealing with different measure units. The
currency conversion and unit measures conversion services are provided as web
services. The user may choose the preferences for the currency and unit measures
(International System of Units (SI), UK Imperial System or US System) in which he
prefers to negotiate.

The matching terms service is required when some of the agents does not
understand the content of a message, e.g. an item (product/service) under negotiation.
This service is implemented based on lexical and semantic similarity measures. We
have integrated three different similarities matching, which are: (i) calculating an n-
grams [8] value for the attributes and relations of the concepts; (ii) calculating an n-
grams value for the description of the concepts, and (iii) applying the LCH method [3]
based on WordNet [25] to detect semantic similarity between both concepts.

Afterwards, if at least two of the three methods deliver a result, a final result is
calculated using weighting in order to make a statement if the compared concepts
(products or services, in the context of this work) have the same meaning.
Furthermore, a classification according to the correspondence values, based on an
established threshold is done.

Ontology-based services are important to allow negotiation to take place. The
mapping between two heterogeneous domain ontologies is done dynamically when an
agent requests this service, after a not-understood CFP (Call for Proposal). When
agents get their ontology terms matched (i.e., they achieve a common understanding),
they identify a business opportunity and may negotiate towards the establishment of a
contract.

As agents need to be able to communicate with other agents and perceive the
environment, a number of interaction languages, tools and platforms have been
developed [17]. It is necessary to be aware of the potency as well as the impact of
each language, tools and platforms, and select the appropriate form according to the
requirements of the problem domain.

In [31], the authors argue that some popular frameworks such as JADE reduce the
environment to a message transport system or broker infrastructure, and even in the
FIPA specifications it is hard to find any functionality for the environment beyond
message transport or broker systems. The objective would be not to restrict interaction
to inter-agent communication because it neglects a rich potential of possibilities for
the paradigm of Multi-Agent Systems (MASs).

However, if there exists already an effort to develop platforms, tools and
languages, and they have been used successfully in the MAS area, it seems reasonable
to integrate and improve them in order to explore the full potential of environments.

To address the problem of how to create agents with heterogeneous ontologies
using an automated and integrated approach, we developed a new methodology, since
we were faced with the problem of creating JADE agents with disparate
ontologies. First, we created the ontologies using the ontology editor Protégé [16],

108 A. Malucelli, H.L. Cardoso, and E. Oliveira

from Stanford University, and produced a set of OWL (web ontology language) [27]
files. Then, we transformed the ontological information into an object-oriented
language format suitable for JADE.

If our agents shared a common ontology, it would have been possible to use
the JADE’s built-in approach. However, in open MAS, as we are considering, the
JADE’s built-in approach is not applicable, since it does not provide support for
the integration of different ontologies.

The implemented platform allows both scenarios. The first one is the case when all
agents share the same hard-coded ontology which is by default supported by JADE. It
was implemented to explore the JADE’s features in order to find out how to use
ontologies in JADE. The second case, and the most relevant to work, uses the Jena
[19] model interface, which has been used to extract information from the ontologies
to implement a transparent mapping mechanism from ontologies to agents. This
approach has also the advantage of allowing the use of Protégé as a tool to update the
ontologies; otherwise updating an ontology would implicate generating Java sources
with the protégé BeanGenerator [2] plug-in and recording portions of the agents
source code.

Moreover, the implementation of our negotiation process combines the FIPA
Contract Net Interaction Protocol with an additional protocol called Ontology
Interaction Protocol (OIP). The former represents the general scenario of agents
trading goods or services proposed by FIPA. The latter implements the protocol
necessary for solving the interoperability problems, when agents are interacting with
the environment requesting the ontology-based services [24].

2.1 Combining Ontologies and Agents Technologies

In order to communicate, agents need to use a common language – a language with an
unambiguous syntax, well-defined semantics or meanings and expressive power.
Thus, JADE agents exchange ACL (Agent Communication Language) messages that
are in a standard and FIPA-compliant form to ensure interoperability by providing a
standard set of ACL message structure, and, to provide a well-defined process for
maintaining this set [13].

Inside of an agent, ontological information is represented as Java objects, but in the
content slot of an ACL message, this ontological information is represented as a string
or a sequence of bytes. To achieve translations between these two different types of
representation, JADE provides a number of classes structured in several packages,
known as the Content Reference Model (CRM) [4]. To create an ontology, the CRM
contains the classes: Predicates, Concept and AgentAction, that have to be
instantiated. “Predicates” are expressions that say something about the status of the
world and evaluate to true or false, “Concepts” are expressions that indicate entities
that exist and that agents talk and reason about, and “AgentActions” are expressions
that indicate something that can be executed by some agent.

The total of all classes make up our ontology and every single agent involved in a
negotiation process has to use these classes. This means that there must be prior
agreement not only about the name used to identify the ontology but as well about
sharing the ontological classes. We have compensated this limitation for agents using

 Enriching a MAS Environment with Institutional Services 109

heterogeneous ontologies creating a shared top-level ontology while each agent has its
own private domain ontology.

Top-Level and Domain Ontology. We profit from JADE's support to build in
hierarchies in ontologies as a way to combine ontologies, thus facilitating code re-
usage. We have created two types of ontologies using Protégé: a generic one named
Institutional Ontology and other ones fitting in the Car Assembling domain named
Car Assembling Ontology and Automobile Assembling Ontology.

Institutional Ontology is considered as a top-level ontology, while Car Assembling
Ontology and Automobile Assembling Ontology are considered as a domain ontology.
The Concepts, AgentActions and Predicates defined in the top-level ontology describe
the basic concepts and relationships invoked when any information in an e-commerce
context is expressed in natural language, and therefore, are not only related to the
domain of Car Assembling. The domain ontology contains the elements a car consists of.

Figure 1 graphically points out the hierarchy (UML representation) in the
ontologies. Every agent who wishes to negotiate with others must be acquainted with
the ontological classes (“CLS” in the figure) whose objects are used to fill the content
of an ACL message. Both, the Customer Enterprise Agent (CEAg) and the Supplier
Enterprise Agent (SEAg) are able to interpret unambiguously the messages
exchanged. To indicate this, they register the name of the ontology they use.
Institutional Ontology and Car Assembling Ontology are recognized as Java classes.

Institutional Ontology

ACL Communication

institutional-based Ontology

CLS

CLS
Car Assembl ing

Ontology

Supplier
Agent

Customer
Agent

Car Assembl ing
Ontology

CLS

Fig. 1. Agents communicating with the same Domain Ontology

However, with agents using heterogeneous ontologies – but designed to describe
the same domain of discourse - there are no classes that can be shared. A merging of
two or more ontologies might not be an adequate solution in a competitive context
since it presumes that every enterprise fully reveals its ontology.

 To solve this problem, our approach uses a different way to access the information
contained in the ontology of any agent and to search for the required information. The
implementation partially abstains from the ontological classes, but choosing another
format to provide the knowledge. In this way, the model tries to compensate the
platform’s incapability to deal with agents using different ontologies. Figure 2 shows
this scenario.

Every agent taking part in a negotiation process shares the Institutional ontology
and additionally each one explores its own, more specific ontology for the domain of

110 A. Malucelli, H.L. Cardoso, and E. Oliveira

Institutional Ontology

ACL Communication

institutional-based Ontology

CLS

OWLOWL
Car Assembling

Ontology

Customer
Agent

Automobi le
Assembling Ontology

Suppl ier
Agent

Fig. 2. Agents communicating with heterogeneous Domain Ontology

Car Assembling (in the example Car Assembling Ontology and Automobile Assembling
Ontology). The Institutional Ontology is an ontology that is represented in a suitable
way for JADE agents, that is, a set of Java classes. The domain ontologies rely on Web
Ontology Language (OWL) files and to handle the OWL files we are using JENA.

Sharing the institutional ontology on the one hand ensures that the agents know
exactly the meanings of the messages they are sending and receiving. On the other
hand, since agents are able to use their own domain ontology, uniformity is not
enforced and consequently the semantic interoperability problem may occur. To solve
such problems the ontology-based services are required.

2.2 Ontology Interaction Protocol (OIP)

The implementation of a negotiation process combines the FIPA Contract Net
Interaction Protocol with an additional protocol called Ontology Interaction Protocol
(OIP), as presented in figure 3. The former represents the general scenario of agents
trading goods or services proposed by FIPA. Alike other interaction protocols, it
structures complex tasks as aggregations of simpler ones. The latter implements the
message flow necessary for solving the problems of interoperability, including the
interaction of customer and supplier agents when requesting/receiving a service. We
have agentified the services with the purpose of facilitating the interaction between
the agents and services.

In our scenario, the Customer Enterprise Agent plays the role of the initiator while
the Supplier Enterprise Agent is the participant. The initiator wishes to have some
task performed and further wants to optimize a function that characterizes the task.
This characteristic is commonly expressed as the price, but could also be soonest time
to completion, fair distribution of tasks, etc. [14].

For a given task, the participants may respond with a proposal or refuse.
Negotiations then continue only with the participants that proposed. The initiator
selects among all proposals the best one, based on its own criteria defining what
“best” is, and replies, telling if it accepts the proposal or not. In the former case, once
the Supplier Enterprise Agent has completed the task, it sends a message to the
Customer Enterprise Agent in the form of an INFORM-DONE or a more explanatory
version in the form of an INFORM-RESULT. However, if the participant fails to
complete the task, a FAILURE message is sent.

This sequence diagram (figure 3) of the FIPA Contract Net Protocol shows how
contracts in general accomplish. JADE provides classes that are implementation of
the FIPA Contract Net Protocol.

 Enriching a MAS Environment with Institutional Services 111

Fig. 3. FIPA Contract Net Interaction Protocol and Ontology Interaction Protocol

The agent responding to a CFP (Call for Proposal) performative should answer
with a proposition giving its conditions on the performance of the action. The
responder's conditions should be compatible with the conditions originally contained
in the CFP, e.g., the CFP might seek proposals for an offer for a set of tires, with a
condition that the currency is euro. A compatible proposal in reply would be “500
euros for a set of 4 Michelin tires”. An incompatible proposal, for example, would be
to use South African rand as currency.

The sequence diagram in figure 4 represents the implemented ontology interaction
protocol (OIP), which intends to find correspondent concepts in two heterogeneous
ontologies. The ontology-based services are provided by the Ontology-based Services
Agent (OSAg). The Customer Enterprise Agent (CEAg) and the Supplier Enterprise
Agent (SEAg) will interact with the OSAg.

Negotiation proceeds as follow, the numbers in brackets refer to the messages
exchanged as depicted in the figure 4.

After having received a CFP (1) as part of the FIPA Contract Net Protocol and not
being able to interpret the requested item, the SEAg sends a message with the
performative NOT_UNDERSTOOD to the OSAg (2), acquainting who sent the CFP
and the name of the unknown item.

The OSAg sends the name of the item it has just received to the CEAg (3) in order
to get further information about it. The CEAg will analyze that request and send back
attributes of the concept, their types, price and the description, i.e. all the information
about this item (4). The price is taken from its pricelist.

112 A. Malucelli, H.L. Cardoso, and E. Oliveira

Fig. 4. Ontology Interaction Protocol

(5) and (6) refer to the pre-selection process. As the name suggests, the pre-
selection process aims at getting candidate concepts, which could be the
correspondent for the requested product and therefore reducing the target quantity.
After having received (4), the OSAg knows the price of the product under negotiation
and sends it to the SEAg (5). The process selects among all products the ones whose
price value is in the range between 75% and 125% of the received value. This process
results in a list of product candidates that is returned to the OSAg, including their
names, the characteristics and their description in natural language.

Applying the pre-selection process, we reduce the set of potential matching
concepts, which is absolutely essential in huge ontologies defining many entities.
Otherwise the number of pairs, meaning concepts that have to be compared, would be
too high.

The currency conversion service provided by the OSAg might be needed and can
be requested if the SEAg’s pricing of items uses a different currency from the
requested product. After the selection, the SEAg answers with a list containing names,
documentation and attributes of potential correspondent concepts (6).

After receiving all the information about the item under negotiation and a list of
possible corresponding items, the OSAg is able to apply methods in order to match the
terms (7).

These ontology mapping methods aim at detecting syntactic and semantic
similarity of terms. Every term of the proposed, potential correspondent item is
compared to the requested term.

In step (8), the OSAg informs the SEAg about the result of the comparisons
delivered from the ontology mapping methods, i.e. it informs the name of the
correspondent item or an appropriate message if this could not be discovered.

The SEAg is then able to respond to the CEAg (9), either with a PROPOSE or with
a REJECT_PROPOSAL that is part of the FIPA Contract Net Interaction Protocol
again.

 Enriching a MAS Environment with Institutional Services 113

3 Normative Environment

As exposed before, one of the main aims of the EI is to provide a level of trust
through an enforceable normative environment. Norms can play an important role in
open artificial agent systems, where they improve coordination and cooperation [6]
and allow for the development of trust and reputation mechanisms. As in real-world
societies, norms provide us a way to achieve social order [5] by controlling the
environment and making it more stable and predictable.

Since we are concerned with the possibility of commitment creation at run-time
through the establishment of contracts, our environment has a flexible normative
structure. Contractual norms are used to represent agents’ commitments. It is the EI
responsibility to maintain the normative state of the environment, taking into account
the compliance or non-compliance of agents regarding their applicable norms.

Having norms is not sufficient by itself, since agents will not voluntarily submit
themselves to associated penalties in case of deviation. Therefore, appropriate
mechanisms are needed to enforce norm compliance. The normative environment [22]
provides such mechanisms. Therefore, while other institutional services are meant to
further facilitate agent interaction (namely the ontology-based services and
negotiation mediation), the normative environment comprises an active service that
can change the state of the system independently of agents’ actions [26]. This is
because norm violation can simply be caused by the absence of a certain action, and
the occurrence of an associated deadline.

Our EI conceptualization contrasts with other approaches, namely [11], where the
EI is seen as a constraining infrastructure implementing a predefined protocol, in
which agents are not allowed to violate norms. In our perspective, to enforce norms is
not the same as preventing their violation. This approach allows us to maintain the
autonomous nature of agents, while influencing their decision making by ensuring
that certain consequences will hold in case of non-compliance.

3.1 Institutional Reality

In order to provide a trustable environment, the EI must have a means to register what
is going on. The notion of “institutional reality” embraces the collection of the facts
that make it possible to provide norm monitoring services.

Constitutive Rules. Part of this institutional reality is achieved by registering events
acknowledged by the EI as having occurred. For this we took some inspiration on
Searle’s theory on “the construction of social reality” [29]. We distinguish between
brute facts and institutional facts. The latter are obtained from de former, through rules
defining “counts-as” relations (constitutive rules, according to Searle). Brute facts refer
to agents’ illocutions.

Constitutive rules make a connection between what is said and what is taken for
granted, by taking into account a set of institutional roles enacted by agents providing
specific services. Therefore, some institutional facts may come into existence only if
agents performing certain institutional roles utter appropriate illocutions.
Authoritative relations are thus established between roles and institutional reality: an
agent performing a given role is said to be empowered to achieve the effects
expressed in its role-related constitutive rules.

114 A. Malucelli, H.L. Cardoso, and E. Oliveira

For illustration purposes, consider the following simple representation schemes:

− brute facts: illocution(<Sender>, <Content>)
− institutional facts: ifact(<IFact>, <Timestamp>)
− roles: agentRole(<Agent>, <Role>)

Constitutive rules are important to allow the recognition of action execution. This
includes the fulfillment of contractual obligations through the realization of certain
transactions. Consider that we want to certify an action corresponding to a certain
payment obligation. Although the debtor agent may claim to have paid its debt, that
does not make it the case. We would instead trust an agent providing a banking service:

illocution(?B, payment(?Ag1, ?Amount, ?Ag2, ?Time)) ∧
agentRole(?B, bank)
→ ifact(payment(?Ag1, ?Amount, ?Ag2), ?Time)

If we need to certify product delivery, we may rely on a delivery tracking service:

illocution(?DT, delivery(?Ag1, ?I, ?Qt, ?Ag2, ?Time)) ∧
agentRole(?DT, delivery_tracker)
→ ifact(delivery(?Ag1, ?I, ?Qt, ?Ag2), ?Time)

If message delivery recognition is a must, a messenger role may provide such a
service. This may also be provided as an extension to the message transport service of
any agent development platform.

By defining institutional roles instead of institutional agents providing their
associated services, we emphasize the open and distributed nature of our institutional
environment. Therefore, we may have several agents performing the same
institutional role, and thus providing the same institutional service. By “institutional”
we mean that those agents are certified by the EI as being trustworthy.

Institutional Rules. The purpose of providing an enforceable normative environ-ment
must consider other elements, besides institutional facts, that compose the reality to
be monitored, and that do not depend directly on brute facts. Taking into account the
norms to be monitored, we must consider pending obligations, their fulfillment and
violation. The passage of time is also important. All these elements may have
interdependencies that may be made explicit by defining institutional rules. These
rules work on institutional reality elements to produce new elements.

Examples of institutional rules include those that allow us to detect when certain
obligations are fulfilled or violated. For illustration purposes, consider the following
simple representation schemes for further institutional reality elements:

− obligation: obligation(<Agent>, <IFact>, <Deadline>)
− fulfillment: fulfilled(<Agent>, <IFact>, <Timestamp>)
− violation: violated(<Agent>, <IFact>, <Timestamp>)
− time: time(<Timestamp>)

The <Agent> tag refers to the bearer of the given obligation. We assume that an
institutional procedure generates time elements whenever they are relevant for the
application of a certain institutional rule.

 Enriching a MAS Environment with Institutional Services 115

We may define a rule for verifying the fulfillment of an obligation:

ifact(?IFact, ?T) ∧
obligation(?Agent, ?IFact, ?Deadline) ∧ ?T<?Deadline
→ fulfilled(?Agent, ?IFact, ?T)

The rule states that if an institutional fact prescribed by an obligation is achieved
before its deadline, then that obligation is fulfilled.

We may also define a rule for detecting the violation of an obligation:

ifact(time, ?Deadline) ∧
obligation(?Agent, ?IFact, ?Deadline) ∧
¬fulfilled(?Agent, ?IFact, ?)
→ violated(?Agent, ?IFact, ?Deadline)

The rule states that if a deadline referring to an obligation was reached, and such
obligation was not fulfilled, then a violation occurred.

Institutional rules may also point to procedures not amenable to a declarative
representation. Examples include rules that trigger notification procedures whenever
obligations arise, or rules that impose a reputation update when violations occur.

Figure 5 illustrates the relation between constitutive and institutional rules.

Fig. 5. Constitutive and Institutional Rules

This approach to the creation of institutional reality is closely related to the notion of
influence and reaction [12]. In our case, influences comprise agents’ illocutions (brute
facts), through which they try to modify the state of the normative environment, trying
to convince the EI that certain events took place. The environment then reacts to such
influences by applying the constitutive and institutional rules (the “laws of the world”
[12]) and producing institutional facts. However, ours is an asynchronous action model,
since agents can run asynchronously and independently of the environment itself
(closer to the model in [32]). The next subsection addresses the issue of norms and
their relationship with institutional rules.

3.2 Norms

A norm-aware environment can operate either preventively (making unwanted
behavior impossible) or reactively (detecting violations and reacting accordingly)
[30]. In order to cope with the autonomous nature of agents, our approach considers
norms as regulations that agents may or may not abide to.

Brute
facts

Constitutive
Rules

Institutional
Reality

Institutional
Rules

116 A. Malucelli, H.L. Cardoso, and E. Oliveira

Norms prescribe the expected behavior of agents, specifying states of affairs that
must be brought about by an agent before a certain deadline. Therefore, we consider
obligations as the means to express the prescription of behavior norms. Instead of
dictating the exact action an agent must perform, obligations prescribe the institutional
fact that he must bring about. This fits our model of institutional reality, where we
specify by means of constitutive rules how an institutional fact may be accrued.

Just as with institutional rules, norms work on institutional reality elements. The
distinguishing feature of norms is that they prescribe obligations when certain
conditions are met.

Example Norms for a Purchase Contract. A simple set of norms governing a
purchase contract is shown below. Contract specific information include the starting
time ?S, the vendor ?V, the customer ?C, the item ?I, and the price ?P.

→ obligation(?V, delivery(?V, ?I, ?C), ?S+2)

fulfilled(?V, delivery(?V, ?I, 1, ?C), ?TDeliv)
→ obligation(?C, payment(?C, ?P, ?V), ?TDeliv+3)

violated(?V, delivery(?V, ?I, ?C), ?Dln)
→ obligation(?V, delivery(?V, ?I, ?C), ?Dln+5) ∧
 obligation(?V, payment(?V, 10%*?P, ?C), ?Dln+5)

violated(?C, payment(?C, ?P, ?V), ?Dln)
→ obligation(?C, payment(?C, ?P*110%, ?V), ?Dln+15)

These norms state that the contract starts with a delivery obligation on the vendor,
that when fulfilled triggers the obligation on the customer to make the associated
payment. The contract also includes two sanctioning norms (based on the violation of
obligations), indicating what are the penalties for each case of non-compliance. The
institutional rules presented in subsection 3.1 are fundamental for enabling the
chaining of obligations within a contractual relationship. They establish a connection
between the institutional facts that are added and the pending obligations, verifying
their fulfillment or violation, and allowing the applicability of further norms.

Normative Framework. Besides the simple norm representation presented above, we
consider that a normative environment should be embodied with a set of norms
applicable in the absence of further information. An important concept in contract law
theory is the use of “default rules” [7], which exist with the intent of facilitating the
formation of contracts, allowing them to be underspecified by defining default clauses
or default values. The most useful case for this is in defining contrary-to-duty
situations (i.e., sanctions), which typically should be not likely to occur. Default
regulations provide a normative background in which agents can rely to build their
contractual commitments.

Furthermore, taking into account our stated goal of providing assistance to VO
formation, we developed a normative framework [21] that considers three hierarchical
layers of norms: institutional, constitutional and operational. While institutional
norms may be applicable to all agents inside the EI, constitutional norms apply to
agents taking part in a VO, and operational norms specify the operationalization of
such organizations. Default norms may be defined for each of these layers.

 Enriching a MAS Environment with Institutional Services 117

To deal with an environment where a potentially large number of contracts (and
VOs) need to be monitored, each of which may include many norms, our formalism
considers the use of contextualized norms [22], allowing us to organize them. Also,
elements of institutional reality have a context referring to the contract they belong to.

This normative framework, while getting inspiration from law systems in the real-
world, comprises a valuable enrichment of MAS environments that need to be
regulated.

3.3 Implementation

Not surprisingly, our rules and norms are amenable to a rule-based implementation.
Also, the normative environment is based on the occurrence of events. We therefore
chose a forward-chaining production system as the basis for implementation.

Our normative environment prototype is implemented using the Jess shell [15].
Our knowledge base consists of rules and norms, while the working memory includes
institutional reality elements.

Jess also includes the possibility of using frame-based approaches, allowing us to
easily aggregate and use contractual information. Jess also has a built-in concept of
modules, which we use to organize norms within the system and to employ the default
reasoning of the normative environment.

4 Conclusions

We have described our approach towards an Electronic Institution that defines a
framework for agent activities by adding services to those proposed by agent platforms,
building on JADE. The proposed services aim at enriching the MAS environment and
point to the creation of organizations of agents through commitments. These are made
explicit in contracts that a normative environment is responsible to monitor.

In our open and distributed environment where agents representing different
enterprises come together to address new market opportunities, problems as
interoperability and trust may happen. In order to help in solving these problems we
have presented the ontology-based services and an approach towards the development
of a normative environment.

We have implemented a platform integrating agents and ontologies technologies.
JADE was used as a communication platform and a taxonomy was applied as a way
to combine ontologies to facilitate code re-usage. For the domain ontology creation
we used the Ontology editor Protégé with a plug-in, which enables us to store and
load our ontology in OWL format. The generic Institutional ontology was proposed to
ensure that the agents know exactly the meanings of the messages they are sending
and receiving, although using their own domain ontology.

The adaptation of the negotiation process combines the FIPA Contract Net
Protocol with an additional protocol called Ontology Interaction Protocol, which
helps on solving the interoperability problems.

A key factor towards the adoption of agent-based approaches in real-world
business scenarios is trust. Therefore, assisting the establishment of agreements is the

118 A. Malucelli, H.L. Cardoso, and E. Oliveira

first step in managing a business relationship. The negotiation process must result in a
contract that can be enforced by a third-party. We have presented our approach
towards the development of a regulated environment that makes explicit the
contractual commitments in order to enforce them.

The agent technology roadmap [1], by AgentLink III, identifies as key problem
areas the development of infrastructures for open agent communities, as well as the
need for trust and reputation mechanisms. Electronic institutions, together with
ontologies and related services, address the needed infrastructures. Norms, electronic
contracts and their enforcement are pointed out as means to achieve trust in open
environments. Our work is motivated by the need to develop services to assist the
coordination efforts between agents which, representing different real-world entities,
interact with the aim of establishing business relationships.

Acknowledgements

The work reported in this paper is supported by the FCT (Fundação para a Ciência e a
Tecnologia) Project POSC/EIA/57672/2004.

References

1. AgentLink III, Agent Technology Roadmap: Overview and Consultation Report.
http://www.agentlink.org/roadmap/index.html, December (2004)

2. Beangenerator Plug-in, http://acklin.nl/page.php?id=34, October (2004)
3. Budanitsky, A., Hirst, G.: Semantic distance in WordNet: An experimental, application-

oriented evaluation of five measures. Proceedings of the Workshop on WordNet and
Other Lexical Resources, Second Meeting of the North American Chapter of the
Association for Computational Linguistics. Pittsburgh, USA (2001)

4. Caire, G.: Application-defined Content Languages and Ontologies. JADE Tutorial. TILab
S.p.A.. June (2002)

5. Castelfranchi, C.: Engineering Social Order. In: Omicini, A., Tolksdorf, R., Zambonelli,
F. (eds.): Engineering Societies in the Agents World Springer (2000) 1-18

6. Conte, R., Falcone, R., & Sartor, G.: Introduction: Agents and Norms: How to fill the
gap?. Artificial Intelligence and Law, 7(1) (1999) 1-15

7. Craswell, R.: Contract Law: General Theories. In: Bouckaert, B., De Geest, G. (eds.):
Encyclopedia of Law and Economics, Volume III: The Regulation of Contracts. Edward
Elgar, Cheltenham (2000) 1-24

8. Damashek, M.: Gauging Similarity via N-Grams: Language-independent Sorting,
Categorization, and Retrieval of Text, Science 267 (1995) 843-848.

9. Dignum, V., Dignum, F.: Modelling agent societies: co-ordination frameworks and
institutions. In: Brazdil, P., Jorge, A. (eds.): Progress in Artificial Intelligence: Knowledge
Extraction, Multi-agent Systems, Logic Programming, and Constraint Solving, LNAI
2258 Springer (2001) 191-204

10. Dignum, V., Dignum, F.: Towards an Agent-based Infrastructure to Support Virtual
Organizations. In: Camarinha-Matos, L. M. (ed.): Collaborative Business Ecosystems and
Virtual Enterprises Kluwer (2002) 363-370

 Enriching a MAS Environment with Institutional Services 119

11. Esteva, M., Padget, J., Sierra, C.: Formalizing a language for institutions and norms. In:
Meyer, J.-J., Tambe, M. (eds.): Intelligent Agents VIII Springer (2002) 348-366

12. Ferber, J., Muller, J.P.: Influences and Reaction: a Model of Situated Multiagent Systems.
2nd International Conference on Multi-agent Systems, Japan, AAAI Press (1996)

13. FIPA ACL Message Structure Specification. SC00061G. FIPA TC Communication,
http://www.fipa.org/specs/fipa00061/SC00061G.html, March (2004)

14. FIPA Contract Net Interaction Protocol Specification, SC00029H, 12/03/2002,
http://www.fipa.org/specs/fipa00029/SC00029H.html, March (2004)

15. Friedman-Hill, E.: Jess in Action. Manning Publications Co. (2003)
16. Gennari, J., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriksson, H.,

Noy, N.F., Tu, S.W.: The Evolution of Protégé: An Environment for Knowledge-Based
Systems Development, Technical Report. SMI Report Number: SMI-2002-0943 (2002)

17. He, M., Jennings, N.R., Leung, H.-F.: On Agent-Mediated Electronic Commerce, IEEE
Transactions on Knowledge and Data Engineering. Vol. 15(4) July/August (2003) 985-
1003.

18. Java Agent DEvelopment Framework, http://jade.tilab.com
19. Jena Semantic Web Framework, http://www.hpl.hp.com/semweb/jena.htm, October

(2004)
20. Lopes Cardoso, H., Malucelli, A., Rocha, A.P., Oliveira, E.: Institutional Services for

Dynamic Virtual Organizations. In: Camarinha-Matos, L. M., Afsarmanesh, H., Ortiz, A.
(eds.): Collaborative Networks and Their Breeding Environments – 6th IFIP Working
Conference on Virtual Enterprises (PRO-VE’05) Springer. (2005) 521-528

21. Lopes Cardoso, H., Oliveira, E.: Virtual Enterprise Normative Framework within
Electronic Institutions. In: Gleizes, M.-P., Omicini, A. & Zambonelli, F. (eds.):
Engineering Societies in the Agents World V Springer. (2004) 14-32

22. Lopes Cardoso, H., Oliveira, E. Towards an Institutional Environment using Norms for
Contract Performance. In: Pechoucek, M., Petta, P., Varga, L. Z. (eds.): Multi-Agent
Systems and Applications IV – 4th International Central and Eastern European Conference
on Multi-Agent Systems (CEEMAS 2005). Springer (2005) 256-265

23. Malucelli, A., Oliveira, E.: Using Similarity Measures for an Efficient Business
Information-Exchange. In: Skowron, A., Barthes, J-P., Jain, L, Sun, R., Marizet-
Mahoudeaux, P., Liu, J., Zhong, N. (eds): 2005 IEEE/WIC/ACM International Conference
on Intelligent Agent Technology. IEEE Computer Society, Los Alamitos, California
(2005) 234-237

24. Malucelli, A., Palzer, D., Oliveira, E.: Ontology-based Services to help solving the
heterogeneity problem in e-commerce negotiations. To be published in Journal of
Electronic Commerce Research and Applications - Special Issue Electronic data
engineering: the next frontier in e-commerce. Vol. 5(3) Elsevier (2006)

25. Miller, G.: WordNet:A Lexical Database for English. Communication of ACM, 38(11)
(1995) 39-41

26. Odell, J., Parunak, H.V.D., Fleischer, M., Breuckner, S.: Modeling Agents and their
Environment. In: Giunchiglia, F., Odell, J., Weiss, G. (eds.): Agent-Oriented Software
Engineering III. Lecture Notes in Computer Science, Vol. 2585. Springer-Verlag, Berlin
Heidelberg New York (2002)

27. OWL – Web Ontology Language, http://www.w3.org/TR/owl-features/, October (2004)
28. Rocha, A.P., Lopes Cardoso, H., Oliveira, E.: Contributions to an Electronic Institution

Supporting Virtual Enterprises’ Life Cycle. In: Putnik, G., Cunha, M.M. (eds.): Virtual
Enterprise Integration: Technological and Organizational Perspectives Idea Group, Inc.
(2005) 229-246

120 A. Malucelli, H.L. Cardoso, and E. Oliveira

29. Searle, J. R.: The Construction of Social Reality. Free Press, New York. (1995)
30. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing norms in multiagent

systems. In: Lindemann, G., Denzinger, J., Timm, I. J., Unland, R. (eds.): Multiagent
System Technologies, Springer. (2004) 313-327

31. Weyns, D., Holvoet, T.: A Formal Model for Situated Multi-agent Systems. Formal
Approaches for Multi-Agent Systems, Special Issue of Fundamenta Informaticae, 63(2)
(2004)

32. Weyns, D., Van Dyke Parunak, H., Michel, F., Holvoet, T, Ferber, J.: Environments for
Multiagent Systems, State-of-the-art and Research Challenges. In: First International
Workshop on Environments for Multiagent Systems, LNAI, Vol. 3374 (2005)

Overhearing and Direct Interactions: Point of
View of an Active Environment

Eric Platon1, Nicolas Sabouret2, and Shinichi Honiden1

1 National Institute of Informatics, Sokendai,
2-1-2 Hitotsubashi, Chiyoda, 101-8430 Tokyo

2 Laboratoire d’Informatique de Paris 6, 8, Rue du Capitaine Scott, 75015 Paris
{platon, honiden}@nii.ac.jp, nicolas.sabouret@lip6.fr

Abstract. Overhearing has been proposed recently as a model of in-
direct interactions in Multi–Agent Systems. Overhearer agents receive
messages that were not primarily sent to them, as when someone hears
a conversation among others. Overhearing has been modeled essentially
as message broadcasting, but this approach raises several issues of scal-
ability and appropriateness of the mental state of overheard agents.

In this paper, we motivate and propose a model of overhearing that
copes with these issues by introducing an explicit environment entity to
handle overhearing. We define key notions with focus on the environment
perspective, model them and their relations, and detail an algorithm that
describes the environmental process for agent interactions. We finally
illustrate our approach with an electronic market scenario.

1 Introduction

The design of software environments in Multi–Agent Systems (MAS) originates
from the need for an explicit representation of the ‘world’ in computer simula-
tions [7,6]. Design is now evolving to broader use in an expanding variety of sys-
tems where the environment yields new solutions—and new challenges—as can
be observed in the literature [25]. In particular, agent interactions leverage con-
ceptual and concrete advantages from the environment, for instance in the case
of indirect interactions [19,5,12]. Stigmergy is a notable case that leads to novel
ways to design systems and algorithms [19,3], and overhearing recently appeared
as relevant and promising [12,2,14]. When an agent ‘overhears an interaction’, it
receives information about the interaction that is not primarily addressed to it.
For instance, one can listen to a conversation between two friends without being
part of their dialog.

Although overhearing (OH) is natural for humans, it remains exceptional
in software systems. Multi-party discourse analysis shows nonetheless that OH
is a required communication type to model group interactions among artificial
agents [5]. Moreover, recent agent systems were developed with OH and they
have validated advantages as for improving group awareness [14], group com-
munication [2], or monitoring [12]. However, this work models OH as ‘message
broadcasting’ and it does not address several issues relative to the environment.

D. Weyns, H. Van Dyke Parunak, and F. Michel (Eds.): E4MAS 2005, LNAI 3830, pp. 121–138, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

122 E. Platon, N. Sabouret, and S. Honiden

In this paper, we argue that overhearing should be processed by an explicit
and active environment. The environment approach is supported by related work
in the agent community but we think several issues remain to be clarified. What
is the very nature of OH, classified indistinctly as communication or interaction?
And how does the environment contribute to the OH concept? In order to address
these questions, we describe a model of agent environments that mediates and
manages homogeneously ‘traditional’ direct communications and OH.

After motivating this research in section 2, section 3 describes the concepts
involved in this work from the point of view of the software environment. Sec-
tion 4 introduces our preliminary model of environment in supporting overhear-
ing. Section 5 illustrates our approach with an example scenario. Finally, we
discuss the status of this work in section 6 and conclude in section 7.

2 Motivations and Related Work

In early work, overhearing was modeled and implemented as message broad-
casting or multi–casting [12,2,14,20]. This is a straightforward way to represent
and exploit OH owing to the available infrastructures, technologies, and design
usage. However, broadcasting and multi–casting suffer from several issues. First,
broadcasting seems lacking scalability in open and large MAS. If all agents are
to broadcast any message to all reachable agents, communication infrastructure
would be rapidly overwhelmed, without guarantee to effectively reach agents.
Second, multi–casting contradicts some intuitive features of OH since it requires
that the sender agent knows how to reach addressees (e.g. diffusion list), whereas
an overhearing agent is not directly contacted, but indirectly informed. That is,
sender and receiver agents cannot always be in appropriate mental states, e.g.
when an agent does not expect to yield information by overhearing. Third, multi–
casting often supposes all recipients have the same status of ‘addressee’ in the
discourse, whereas OH requires two ‘roles’ of addressee and overhearer as defined
in multi-party communication [5]. The two roles could be modeled with multi–
casting (e.g. the cc. field for emails for the ‘OH role’), but it emphasizes that
the sender knows how to reach overhearers and it is not usually the case since
the sender is not always aware of each overhearer1. Consequently, multi–casting
implies an addressing concern in open MAS. It cannot model sending a message
to unknown agents that enter the system if the new comers do not explicitly
inform the sender about their arrivals. For instance, a conversation on the street
seems hard to overhear by multi–casting, because speaker and addressees do not
usually know dynamically how to reach ‘pedestrians that walk nearby’. Such
argument leads to the idea that OH should be mediated, since an explicit link
between the sender and the overhearer is missing. That is the reason of the
interest in an active environment.
1 In [5], the authors distinguish overhearers (known by the speaker) from eavesdrop-

pers (unknown by the speaker). We confound the two roles into overhearer, due to
looser hypothesis than multi–party discourse: conversing on a street, the speaker
knows the presence of pedestrians who are potential eavesdroppers.

OH and Direct Interactions: Point of View of an Active Environment 123

Beyond this result, the environment enacts a panel of properties that could
not be achieved with broadcasting only. For example, broadcasting does no guar-
antee that agents comply with overhearing, i.e. that agents effectively send mes-
sages to overhearers. If a system designer wants to enforce overhearing, broad-
casting has to be imposed by coding into each agent, which is not a likely hypoth-
esis in open systems where agents are supposed heterogeneous. The environment
is however external to agents and it can mediate communication to enforce over-
hearing independently from agents.

The environment has already been investigated as candidate for the missing
link in indirect interactions among agents. Balbo et al. developed the ESAC bus
fleet management system whereby agents interact by annotating messages with
delivery directives the environment has to execute [1]. Such directives define re-
ceivers by properties (closest agent, bus agent, agent on line n, etc.), so that
OH is possible since messages are delivered to all agents verifying the properties
whether they are addressees or not. However, ESAC yields the control of the
environment to agents. Although ESAC benefits from this decision at design
and implementation time, we think the concept is counter–intuitive and the en-
gineering may be neither portable nor reusable. Indeed, the environment should
be a first class–entity in MAS [26], i.e. its existence should be independent and
complementary to agents. Directives from agents should be instead preferences
(or perhaps influences [7]) they express about messages, in the way we direct our
head toward the addressee to allow our voice better traveling to its destination.
In this case, OH is performed by the environment that uses such preferences to
determine the adequate execution independently from agents.

In MIC*, interactions are represented by ‘interaction objects’ (IO) that evolve
in a deployment environment independently from agents, which only produce
or consume IOs [11,10]. Once produced by agents, IOs become a responsibil-
ity of the environment that manages their life cycle and delivery. In addition,
the notion of interaction space is developed to express that IO propagation is
framed into physical or virtual areas. A model of OH is thus possible where
IOs are delivered in an interaction space at least defined with the speaker, ad-
dressees and overhearers. However, the algebraic model of IO unifies all classes
of interactions as one concept. From the point of view of the environment,
we think different interaction types should be distinguished to deal with both
concrete and epistemic situations. If both are confounded, it is unclear how
the bits representing a ‘paper IO’ (a newspaper) and ‘discussion IOs’ (pro-
nounced words) should be composed. It seems possible to ‘overhear the paper
IO’ in this model, and we think such semantical issues should be more carefully
handled.

Coordination fields and TuCSoN share similar concepts dealing with typed
tuples and programmable tuple centers, respectively [17,16,18,21]. These tech-
nologies provide implementation frameworks for overhearing by letting design-
ers configure entities distinct from agents—that form an environment—to define
how interactions propagate into the system. ‘Message tuples’ in coordination
fields seem particularly adapted to model OH [16], and the ‘mailbox’ developed

124 E. Platon, N. Sabouret, and S. Honiden

upon TuCSoN in [21] shows another possible implementation. The design of
applications with TuCSoN is based on the notion of ‘coordination artifact’ [21].
This entity in–between agents and their environment supports the idea of sepa-
ration of concerns and responsibilities. Nevertheless, we think an agent does not
interact the same way with another agent and with a ‘non–agent’ (to be defined
in 3.1) and it has consequences on modeling OH with an environment that is not
represented with coordination fields or artifacts. Although it might be achieved
with two different kinds of coordination artifacts, guidances are required and
this is a corollary theme of this paper.

3 Concepts

In this section, a series of definitions is compiled to present elements exploited in
our approach of overhearing. We adopt the point of view of the environment in
these definitions. That is, we focus on the traits in the elements that are related to
the environment. In particular, the definitions emphasize the interactive aspects
of the elements.

3.1 MAS Concepts from the Environment Viewpoint

Transfer, Interaction, and Communication. Toward a definition of over-
hearing, we first distinguish the notions of transfer, interaction, and communica-
tion, where Fig.1 depicts a graphical notation to represent the definitions. The
term ‘entity’ refers to the active elements involved in the definition and will be
detailed in the next definition. First, we define transfer and interaction.

A transfer is a process whereby
information is transfered among
entities;

An interaction is a transfer
whereby the state of involved en-
tities is modified [15].

Entity Entity

Entity Entity

Transfer

Interaction

Fig. 1. Transfer and Interaction

Transfers exist in–between entities as ‘information carriers’. We represent
transfers with a dashed arrow that terminates at entity boundaries, as shown
on the upper part of Fig. 1. Transfers can be direct from a sender to a receiver
entity, or indirect when the receiver is not an intended target of the transfer.

Interaction is a transfer that changes the internal state of entities and so our
representation is a plain arrow that ‘crosses’ boundaries of the entities on the
figure to show that some effects happen.

We further separate two types of interactions. Tangible interactions mod-
ify the correlated states of environment and involved entities. In this case, the

OH and Direct Interactions: Point of View of an Active Environment 125

environment mediates the interaction and its state is changed in accordance
with the states of involved entities. Properties of tangible interaction are that
they are only direct and their effects are evaluated by the environment. Exam-
ples come from natural interactions such as pushing a physical object where
the effect is the modification of the object shape or position in the environ-
ment. Other examples in a virtual context are the update of a database or the
exploitation of a web–service whereby ‘tangible’ reactions occur (e.g. service
execution).

Intangible interactions are communication. The environment only mediates
the interaction and its state is uncorrelated to the effect. Intangible interaction
effects can be direct or indirect and they are not evaluated by the environment,
but by some entities (see next definition). A typical example is a speech act
whereby one can influence someone without apparent result. In agent–based
auction systems, auctioneers send descriptions of an item to sell, but deci-
sions from bidders are in their internals. Replies can only be expected by the
auctioneer.

In consequence of these definitions, the involvements of the environment and
entities in the different types are summarized in the following Table 1.

Table 1. Environment Involvement

Environment Entities
Transfer X

Transfer aspect XTangible Interaction
Effect X X

Intangible Interaction Transfer aspect X
(Communication) Effect X

Transfer is performed by the environment to mediate information among
entities, in both types of interactions. Tangible interactions involve environment
and entities, where the role of the environment is to ensure valid states in the
execution of interaction effects. In contrast, intangible interactions depend on
entities and the environment has no responsibility in their effects. The role of
the environment is limited to the transfer of information.

Agent and Non-agent. From the point of view of the environment, we now
identify the entities that can interact. We first define an agent as follows.

An agent is an autonomous and knowledgeable entity that can engage
in all types of interactions, i.e. tangible and intangible.

The definition emphasizes the interaction aspect of agents. It remains a compat-
ible version of classical definitions [7,22], but only the interactive parts matter
from the point of view of the environment.

126 E. Platon, N. Sabouret, and S. Honiden

The second type of entities are elementals2, or ‘non–agents’.

An elemental is an entity that can participate in tangible interactions.

Such an entity participates in tangible interactions with other entities, but it
cannot participate in intangible interaction, i.e. in communication. In addition,
it cannot engage interactions. It is passive, by contrast with the activity of agents
due to their autonomy. For instance in a software simulation, two stones interact
in a physical meaning when a collision occurs (tangible in the environment), but
they cannot decide the interaction.

Agents have the property to verify the definition of elementals, so that they
can act as elementals. Various reasons motivate this statement, such as consid-
ering an agent interacting with an elemental, or two agents interacting out of
the scope of the language (e.g. with senses, or pushing one another). In the first
case, an agent can only act on an elemental through a tangible interaction, and
from the environment, we consider this interaction involves two elementals.

From the environment perspective as shown in table 1, agents and elemen-
tals are similar, since they both participate in transfers and tangible interactions.
Agents can also engage in intangible interactions, but this is concretely an infor-
mation transfer for the environment. However, overhearing is a case of indirect
intangible interaction. It requires that the environment can distinguish agent
from elemental, since elementals cannot process such type of transfer.

Overhearing. Before defining overhearing in the perspective of the environ-
ment, we present a generally accepted definition based on [12,14,5]: ‘Overhearing
is an indirect interaction whereby an agent receives information for which it is
not an addressee.’ For instance, one can overhear a discussion on the street just
by listening to the involved agents. Our definition in this paper is as follows.

Overhearing is an agent–specific indirect transfer whereby an agent re-
ceives information for which it is not addressee.

This definition highlights that the sole function of the environment toward over-
hearing is to carry information and deliver it according to environmental con-
figuration (e.g. delivery to all nearby agents in the ‘air environment’, to none in
the ‘water environment’). The consequence of the delivered information is out
of the environment responsibilities.

3.2 An Environment for Overhearing

In relation with Table 1, Fig. 2 depicts the environment perspective on agent
communication and interaction.

Only transfer and tangible interaction are completely processed by the en-
vironment (upper figure). However, the effect of intangible interactions is out
2 Initially, we chose the term ‘object’ to label this concept, but the meaning inher-

ited from object-oriented programming cannot easily be redefined. Consequently the
term elemental should be understood as an alternative in the frame of this paper,
independently from its legal meaning.

OH and Direct Interactions: Point of View of an Active Environment 127

Environment

Entity Entity

Tangible Interaction
Transfer

Environment

Agent Agent

Intangible Interaction (communication)

Fig. 2. Environment Perspective on communication, interaction, transfer, and entities

of the environment responsibilities, so that the environment processes this type
of interaction as a simple transfer, represented by a dashed line prolonged with
plain arrows to highlight the difference with other cases on the lower figure.

In order to handle the different cases of ‘traditional’ direct interactions and
indirect interactions related to OH, the environment needs to deal with the
concepts introduced above and it should address:

What to process? A mean to distinguish transfer from tangible interaction.
Intangible interactions are out of the scope of the environment.

For Who? A list of agents and elementals that lie in the environment. The
population evolves in open systems, but also in ‘closed’ systems where mo-
bility is possible. Thus, the environment must catalog who is present to react
appropriately.

Where to direct the process? A mean to address agents and elementals.
The environment manages the propagation of transfers, and it must de-
termine direct and indirect targets.

How to process? A mean to specify the types of transfer that are allowed.
Different environments have different properties: air and water do not permit
the same propagation laws and affect the processing of OH.

In conclusion to this conceptual part, the environment we identify for direct
interaction and OH is a structured information transfer carrier that facilitates
interactions among agents and elementals, and obeys to configurable environ-
mental rules.

4 Model

The conclusive statement of section 3 declares that the environment is a well-
defined entity of MAS. The environment has a proper interface to let agents
and elementals deal with it, and to distinguish them. Also, it must maintain a
population list that lies and can therefore interact. The addressing relative to

128 E. Platon, N. Sabouret, and S. Honiden

the presence of entities deals with a mean to structure and situate targets of
communication/interaction. Consequently, we refer to a topology of the environ-
ment. Finally, environmental rules can be compiled in a configuration policy that
defines how the environment must process its activity.

Hence, we model the environment as the hereafter formula and the following
parts aim at detailing the different elements constituting this representation.

ENV = (Topology, Policy, Interface) (1)

4.1 Model Development

Population Management and Topology. The environment must maintain
a list of entities in accordance with a topology to retrieve them. Consequently,
we define the tuple:

Topology = (Transpace, Pop Ag, Pop Ele) (2)

Transpace is a pair ({TS}, Relations) referring to a set of Transfer
Spaces (TS) and their relations to structure the environment. TS are subsets
of the environment that serve to representing virtual or physical spaces, such as
a room or a network domain. Pop Ag and Pop Ele reference agent and elemental
populations that are present in the environment, out of any transfer space.

Each TS is a tuple:

TS = (TS Pop Ag, TS Pop Ele, TS Rules) (3)

TS Pop Ag and TS Pop Ele reference agents and elementals respectively in
the TS. TS Rules is a set of environmental rules applied in the TS only, and it
is explained later in this section. For example, an agent can be in the concrete
room of a house (a TS) and obeys to the ‘air rule’ whereby transfer is propagated
in all directions. Another example is a ‘virtual room’ (another TS) defined by a
phone call, where agents obey to the line configuration.

In our approach, the structure of the environment depends on agents and
elementals that can belong simultaneously to several TS. Relations represents
the organization of TS as a hierarchical structure. A link between two TS means
there exists an agent or elemental that belongs to both. For example, an agent
may be in a room TS and a phone call TS at the same time, so that these two
TS are connected. In such situation, transfer involving agents in the intersection
are ruled by both TS. In the case where TS1 is included in TS2, i.e. all agents in
TS1 are in TS2, TS1 overrules TS2 for all transfers in TS1. For example, agents
attending a party TS can have a ‘private TS’ discussion. In particular, each TS
overrules the default policy of the environment.

Relations in Transpace can be represented as a tree where the root is the
environment and leafs are TS depending on their relations. TS with partial or
no intersection appear at the same hierarchical level, and nested TS appear as
children. An example of topology is presented on Fig. 3.

OH and Direct Interactions: Point of View of an Active Environment 129

B

ED

C

A

TS3

TS1
TS2

Environment

Fig. 3. An environment topology

Environment

TS1 TS2

TS3

contains contains

contains

B in common

Fig. 4. Relations between TS

On this figure, we consider that plain rounds are agents, dashed ovals are
TS, and the rectangle delimits the environment. This situation then means:

Topology = ({TS1, TS2, TS3}, ∅, ∅)
TS1 = ({A, B}, ∅, TS Rules1)
TS2 = ({B, C}, ∅, TS Rules2)
TS3 = ({D, E}, ∅, TS Rules3)

(4)

For instance, A, and B can communicate through TS1 under the condition
TS Rules1, and TS1 and TS2 are connected through B. A cannot interact with
others than B since they are not in a common TS.

In this example, the structure of TS has the tree representation on Fig. 4.
TS1 and TS2 are directly contained in the environment and they share agent
B, so that they are at the same level with a ‘B in common’ relation to state
the two TS are joint. Interactions with B are ruled by both TS. TS3 is in-
cluded in TS2, and this is represented by placing TS3 one level lower as child of
TS2.

Environmental Policies. Policies rule the environment process in Policy and
transfer spaces in TS Rules. We define them commonly as a set of rules:

Policy = (list of rules) (5)

In our approach, a policy is a list of formulas named rules that define the
reactions of the environment for transfer processes3. The structure and variety
of rules depend on environmental needs, and we chose two types in this pa-
per: overhearing to enforce OH so that all agents in the environment or TS
receives all transfers, and none to only authorize direct interactions. Other ap-
plications may define refinements such as a range of communication or variable
OH.

3 Other approaches might define rules for different functions of the environment in-
stead of only transfers, for example for tangible interactions (e.g. Laws of Physics).
We focus on transfers in this paper for the case of overhearing.

130 E. Platon, N. Sabouret, and S. Honiden

The formulas for our two cases are as follows, in a first–order predicate logic
syntax:

overhearing : ∀x ∈ Agent, ∀mx ∈ Mes : (∀y ∈ Agent, deliver(mx, y)) ∧
((¬∃z ∈ Agent, target(x, z)) ⇒ deliver(fail, x))

none : ∀x ∈ Entity, ∀mx ∈ Mes :
(∀y ∈ Entity, target(x, y), deliver(mx, y)) ∧

((¬∃z ∈ Entity, target(x, z)) ⇒ deliver(fail, x))

(6)

The formula of overhearing is restricted to agents, where Agent represents
an agent population (either Pop Ag or TS Pop Ag). Any message mx from
agent x is delivered to all other agents y in the space, including the addressees
of the message. If there is no such a y, a failure message is sent to x.

The formula for none can be applied to agents and elementals. Any message
mx from agent x is delivered to addressees y if they exist. Otherwise, a fail
message is returned to x.

Environment Interface. The interface of environments features similarities
with tuple–spaces [9]. Only two operations are however defined, namely in and
out. The read action is not needed in our case due to our definitions: tuples vanish
once they are transmitted and we think the environment should not maintain
them (e.g. the air does not maintain our words). ‘Persistent tuples’ should be
elementals in our approach (e.g. a book, a note, a recorder) and so ‘reading’
them becomes a tangible interaction with it through the environment.

In addition, the environment interface exposes specific elements to deal with
the communication spaces. Agents can indeed create TS, or enter and exit ex-
isting TS—actions that can be related to mobility.

The in/out operation set has two forms depending on agents and elementals.
The two forms are aimed to indicate to the environment when to deal with
transfer or tangible interaction, and process them accordingly. Consequently, we
define the environment interface as a tuple:

Interface = (Env in ag, Env out ag, Env in ele, Env out ele,
NewTS, Enter, Exit) (7)

Each element of Interface specifies an interface of the environment by defin-
ing what agents or elementals have to comply with. The first four elements of
Interface define how entities interact. Env in ag allows the environment to send
an information to an agent. Its signature is Env in ag(to, from, message) with
to the identity of the intended recipient of the message and from the identity of
the sender. The to parameter is relevant when the environment delivers the mes-
sage to an agent that is not addressee, which is a case of overhearing. Env out ag
defines the operation where an agent sends a message. The signature is similarly
Env out ag(from, to, message). Typically, Env in ag and Env out ag fit agent
communication language such as FIPA–ACL [8].

Env in ele and Env out ele are equivalent operations for elementals, with
the same signatures. For example, Env in ele and Env out ele can be procedure

OH and Direct Interactions: Point of View of an Active Environment 131

calls such as SOAP [23]. Agent can also use elemental interfaces when they ‘act
as elementals’ in tangible interactions.

The three remaining elements of Interface define how agents interact with
the environment itself. Elementals were defined as passive entities and cannot
engage in such interactions. NewTS is a special communication from an agent
A to the environment, asking for the creation and maintenance of a new TS. Its
signature requires the agent identity and the intended rules. In case of successful
creation, the environment first adds the TS to the Relations tree as child of the
current space of A. In the example of Fig. 4, TS3 was created from TS2. Second,
the environment informs all agents about the new space, so that others are aware
of the creation. In case of failure (that could be due to an environmental rule),
A is informed about it. To destroy a TS, all agents must leave it. This permits
the TS to be independent of any agent, especially its creator.

Finally, Enter and Exit are communications asking respectively for enter-
ing or exiting a TS. They have similar signatures and we describe the case of
Enter(x ∈ self ∪ Elementals, s ∈ {TS} ∪ {Environment}). First, the subject
of the entrance is either self—the agent itself—or an elemental. An agent can
decide to enter a TS or to introduce an elemental. However, an agent cannot
force the entrance of another agent in our model. Second, s is the identity of
the aimed TS or the environment itself to enter the system. The exit of a TS
is guided by the topology structure maintained in the Relations of Transpace.
When an agent succeeds in exiting a TS, it ‘returns’ to the parent TS in the
hierarchy. From the example of Fig. 4, an agent that exits TS3 returns to TS2,
and an exit from TS2 ends in the environment out of any TS. If the exit concerns
the environment itself, the agent leaves the system. Enter and Exit events are
also propagated by the environment in the current space, so that all agents are
aware of the presence of others.

4.2 Environment Internal Algorithm

We describe in Algorithm 1 an environmental process to handle direct interac-
tions and OH, relying on our model. All transfers are mediated by the environ-
ment, so that agents have no other ways to interact with each other.

Algorithm 1 is an infinite loop that lasts while the system is running. The
loop contains two parts. First, line 2 is the input of the environment. It receives

Algorithm 1. Environment Internal Algorithm
1: loop
2: operations ← {entities output}
3: repeat
4: process agent transfers(operations)
5: process elemental transfers(operations)
6: manage transfer spaces(operations)
7: until operations=∅
8: end loop

132 E. Platon, N. Sabouret, and S. Honiden

requests from agents and elementals to be processed. Second on lines 3–7, a loop
repeats three sub–procedures to process the requests depending on their types,
namely agent and elemental transfers, or TS management (line 4–5–6 respec-
tively). Once the current operations list is emptied (line 7), the algorithms contin-
ues by reading new inputs in the next iteration. The code of the sub–procedures is
commented in appendix (process agent transfers and process elemental transfers
are similar so only the former, more complex, is detailed).

5 Illustrative Scenario: A Market Place

5.1 System Description

A market place is a regulated open system where agents can trade goods. Several
types where developed so far such as [28,13], without an explicit and active
environment.

Our market place is based on an environment that provides the system foun-
dations whereon agents trade (interact), and it enforces overhearing to produce
some real market conditions such as expected for fish markets or stock exchange.

Our system has the following specification:

1. The system is open, built on an explicit environment.
2. The system mediates interactions through the environment.
3. The environment default policy is to enforce direct interactions (‘none’ rule).
4. There exists only one transfer space in the environment. This TS is the

market place itself.
5. The market place policy is set to ‘overhearing’.

The above specification describes the settings of the system. Openness means
that agents are free to enter or leave the environment and the market place. We
assume interoperability issues to be ‘solved’, notably protocols and ontologies
are known.

5.2 Scenario

Two Seller and one Buyer agents exist in the system and trade the same kind of
goods, for instance appliance. Our scenario has two consecutive frames:

First frame. Seller S1 offers an appliance price of 10. All in the market place
receive this information. Seller S2 desires being attractive before buyers re-
actions and offers for the same appliance a price of 9. The buyer B does not
react to these offers.

Second frame. S2 decides to exit the market place and asks B to do so as well.
S1 expresses its disagreement. B exits and there, S2 offers the appliance for
a price of 10 with a special guarantee that B accepts.

Fig. 5 shows the settings of the system for this scenario in its initial state,
and Fig. 6 shows the final state.

OH and Direct Interactions: Point of View of an Active Environment 133

S1 S2

B

Market
Place

Rule=OH

Environment

Rule=none

Fig. 5. Scenario Environment (initial)

S1
S2

B

Market
Place

Rule=OH

Environment

Rule=none

Fig. 6. Scenario Environment (final)

Agents are represented by circles with a letter to label them, namely B, S1,
and S2. The only transfer space is the dashed–lined oval that delimits the market
place where OH is enforced. Out of the transfer space, agents are in the ‘default
environment’ (the outer rectangle) where the none rule is enforced.

5.3 Model Exploitation

The diagram on Fig. 7 shows the evolution of the scenario with our model as a
sequential diagram (UML notation [24]).

Seller 1 Seller 2 Buyer Environment

Env_out_ag(S1,B,Appliance for 10)

Env_in_ag(B,S1,Appliance for 10)

Env_in_ag(B,S1,Appliance for 10)

process_agent_communication

Env_out_ag(S2,B,Appliance for 9)

process_agent_communicationEnv_in_ag(B,S2,Appliance for 9)

Env_in_ag(B,S2,Appliance for 9)

Env_out_ag(S2,B,Deal out of Market Place)

process_agent_communicationEnv_in_ag(B,S2,Deal out of Market Place)

Env_in_ag(B,S2,Deal out of Market Place)

Env_out_ag(S1,S2,Complain)

process_agent_communication

Env_in_ag(S2,S1,Complain)

Env_in_ag(S2,S1,Complain)

Exit(self,Market Place)

manage_communication_spacesExit(S2,Market Place)

Exit(S2,Market Place)

Exit(self,Market Place)

manage_communication_spacesExit(B,Market Place)

Env_out_ag(S2,B,Appliance + Guarantee for 10)

process_agent_communicationEnv_in_ag(B,S2,Appliance + Guarantee for 10)

Env_out_ag(B,S2,Accept)

process_agent_communicationEnv_in_ag(S2,B,Accept)

Frame 1

Frame 2

Fig. 7. Scenario Evolution

134 E. Platon, N. Sabouret, and S. Honiden

The sequence follows the two frames of the scenario with our model of envi-
ronment. In frame 1, all agents are in the market place so that all interactions are
overheard. The environment enforces this by sending any message to all other
agents in the place. That is the reason why everyone is aware of the concurrence.

In frame 2, S2 leaves the market and other agents are informed. Then B
leaves and only S1 is informed since S2 is not anymore in the TS. Finally, the
last discussion between S2 and B is under the default policy of the environment
(‘none’), so that S1 is not informed.

6 Discussion

This paper addresses the relationship between overhearing and environment. The
adoption of the environment perspective led us to distinguish exchange situations
(transfer, communication, and interaction), entity classes (agent and elemental),
and to consider overhearing as an indirect transfer.

The environment is a unique part of MAS that obeys to rules different from
agent ones. We consider it is independent from direct agent control as it rather
reacts to their influences [7], and it ‘ignores’ agent individual identities, so that
it can be thought of as a ‘blind impartial referee’. To achieve such a blind perfor-
mance of the environment functions, we introduced policies and transfer spaces
to address agents. The modeling of OH—and other exchanges we refer to—seems
realizable in our approach, but a validation is yet to be completed. The example
of section 5 consists in a first step in this direction. For instance, the sequence
diagram shows all communications pass through the environment. This may be
a bottleneck in practical systems if they are implemented directly. Also, current
policies define simple cases of overhearing. But in practice, policies should be
configurable (e.g. a degree of OH) and it requires a refinement of the current
model. In this way, it can also be relevant to study potential conflict among rules
and their composition, in the way human societies use norms and laws.

Finally, the relations among entities may be refined to treat a wider range of
situations. Typically, agents may consume or produce elementals or other agents
that can still exist in the environment. Also, we supposed that elementals are not
sensitive to OH. Such hypothesis is supported by the fact that OH can lead to an
epistemic effect not attributed to elementals: the overhearer receives information
that can update her state (e.g. beliefs). Also, the definition of elementals restricts
interactions to the tangible case that is only direct and conflicts with the indi-
rect nature of OH. However, the ‘microphone concern’ may lead to reconsider
this hypothesis. A microphone reacts to overheard messages as it vibrates when
a discussion occurs. In the frame of this paper, we considered that the micro-
phone only mediates the communication as elemental of the environment and so
participates to a tangible interaction, but this choice remains under discussion.

7 Conclusion

In this paper, we proposed a model of explicit and active environment to support
overhearing (OH), a particular case of indirect interaction that was limited to

OH and Direct Interactions: Point of View of an Active Environment 135

broadcasting in past MAS research. The approach with an active environment
led to preliminary answers to our questions:

• We propose a model of environment with policies and transfer spaces to
model the environment neutral role toward agents.

• We describe a preliminary environmental algorithm for the implementation
of our model.

• What is the very nature of OH, classified indistinctly as communication or
interaction? We elicit a difference between communication and interaction
from the environment viewpoint to show that overhearing is an indirect
transfer of information. (Section 3.1)

• How does the environment contribute to the OH concept? The environment
processes OH in MAS, it places agents in an adequate mental state, and
it allows system designers to enforce the execution of OH when required.
(Section 2)

Beyond the need to consolidate the present work, the distinctions between
entities and their interactivity call for refinements. In particular, elementals and
‘agents as elementals’ can express more information than current models capture.
Philosophical studies about the limit of language and the relationship between
mind and world [27,4] lead to extend the concept of overhearing (that mostly
deals with language) to an emission closely related to the environment and we
could name over–sensing. Improvements and such developments are the topic of
our ongoing activity.

References

1. F. Balbo and S. Pinson. Toward a Multi-agent Modelling Approach for Urban
Public Transportation Systems. In A. Omicini, P. Petta, and R. Tolksdorf, editors,
Engineering Societies in the Agent World’01, volume 2203 of LNAI, pages 160–174.
Springer–Verlag, 2001.

2. P. Busetta, A. Donà, and M. Nori. Channelled multicast for group communications.
In Autonomous Agents and Multi–Agent Systems, pages 1280–1287. ACM Press,
2002.

3. V. Chevrier. From self-organized models to collective problem solving, 2004. Invited
Talk for Engineering Societies in the Agent World 2004.

4. A. Clark. Being There: Putting Brain, Body, and World Together Again. The MIT
Press, 1997.

5. F. Dignum and G. Vreeswijk. Towards a Testbed for Multi-party Dialogues. In
F. Dignum, editor, Workshop on Agent Communication Languages, volume 2922
of LNCS, pages 212–230. Springer, 2003.

6. M. Etienne. SYLVOPAST: a multiple target role-playing game to assess negotiation
processes in sylvopastoral management planning. Journal of Artificial Societies and
Social Simulation, 6(2), 2003.

7. J. Ferber. Multi-Agent Systems: An Introduction to Distributed Artificial Intelli-
gence. Addison-Wesley, 1999.

8. FIPA-ACL Language. http://www.fipa.org/repository/aclspecs.html.
9. D. Gelernter. Generative communication in linda. ACM Transactions on Program-

ming Languages and Systems, 7(1):80–112, January 1985.

136 E. Platon, N. Sabouret, and S. Honiden

10. A. Gouäıch and Y. Guiraud. MIC*: Algebraic agent environment. In Foundations of
Intelligent Systems, volume 2871 of LNCS, pages 216–220. Springer–Verlag, 2003.

11. A. Gouäıch, F. Michel, and Y. Guiraud. MIC*: A deployment environment for
autonomous agents. In D. Weyns, H. V. D. Parunak, and F. Michel, editors,
Environment for Multi–Agent Systems’04, volume 3374 of LNAI, pages 109–126.
Springer–Verlag, 2005.

12. G. A. Kaminka, D. V. Pynadath, and M. Tambe. Monitoring Teams by Overhear-
ing: A Multi-Agent Plan-Recognition Approach. Journal of Artificial Intelligence
Research, 17:83–135, 2002.

13. N. Karacapilidis and P. Moräıtis. Intelligent Agents for an Artificial Market Sys-
tem. In Agents’01, pages 592–599. ACM Press, 2001.

14. F. Legras and C. Tessier. Lotto: Group Formation by Overhearing in Large Teams.
In Autonomous Agents and Multi–Agent Systems, pages 425–432. ACM Press, 2003.

15. P. Longman, editor. Dictionay of Contemporary English. Pearson Longman, 2003.
16. M. Mamei and F. Zambonelli. Self-Maintained Distributed Tuples for Field-Based

Coordination in Dynamic Networks. In Symposium on Applied Computing, pages
479–486. ACM Press, 2004.

17. M. Mamei and F. Zambonelli. Motion Coordination in the Quake 3 Arena Envi-
ronment: a Field-Based Approach. In D. Weyns, H. V. D. Parunak, and F. Michel,
editors, Environment for Multi–Agent Systems’04, volume 3374 of LNAI, pages
264–278. Springer–Verlag, 2005.

18. A. Omicini and F. Zambonelli. Coordination for Internet Application Development.
Journal of Autonomous Agents and Multi-Agent Systems, 2:251–269, 1999.

19. H. V. D. Parunak, S. Brueckner, and J. Sauter. Digital pheromones for coordination
of unmanned vehicles. In D. Weyns, H. V. D. Parunak, and F. Michel, editors,
Environment for Multi–Agent Systems’04, volume 3374 of LNAI, pages 246–263.
Springer–Verlag, 2005.

20. E. Platon, N. Sabouret, and S. Honiden. T-Compound Interaction and Listening
Agents. InM.-P.Gleizes,A.Omicini,andF.Zambonelli, editors,EngineeringSocieties
in the Agent World’04, volume 3451 of LNAI, pages 90–105. Springer–Verlag, 2005.

21. A. Ricci, M. Viroli, and A. Omicini. Environment-based coordination through
coordination artifacts. In D. Weyns, H. V. D. Parunak, and F. Michel, editors,
Environment for Multi–Agent Systems’04, volume 3374 of LNAI, pages 190–214.
Springer–Verlag, 2005.

22. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, Edition 2003.

23. SOAP1.2 specifications. http://www.w3.org/TR/soap/.
24. Unified Modeling Language Specification.

http://www.omg.org/technology/documents/formal/uml.htm, version 2005. ac-
cessed on August 2005.

25. D. Weyns, H. V. D. Parunak, and F. Michel, editors. Environments for Multi-Agent
Systems’04, volume 3374 of LNAI. Springer-Verlag, 2005.

26. D. Weyns, H. V. D. Parunak, F. Michel, T. Holvoet, and J. Ferber. Environments
for Multiagent Systems, State-of-the-Art and Research Challenges. In D. Weyns,
H. V. D. Parunak, and F. Michel, editors, Environment for Multi–Agent Sys-
tems’04, volume 3374 of LNAI, pages 1–47. Springer–Verlag, 2005.

27. L. Wittgenstein. Philosophical Investigations. Blackwell Publishing (Edition 2001),
1953.

28. P. R. Wurman, M. Wellman, and W. Walsh. The Michigan Internet AuctionBot:
A Configurable Auction Server for Human and Software Agents. In Second Inter-
national Conference on Autonomous Agents, pages 301–308. ACM Press, 1998.

OH and Direct Interactions: Point of View of an Active Environment 137

Appendix

Algorithm 2. manage transfer spaces()
1: if the operation is NewTS(A, rule) then
2: if operation is authorized then
3: {TS}← {TS}∪{({A}, ∅, rule)}
4: Relations tree update with the new TS
5: for all agent ∈ {TS} ∪ {Environment} do
6: Env in ag(Environment, agent, ‘NewTS(A, rule) available′)
7: end for
8: else
9: Env in ag(Environment,A, FAIL)

10: end if
11: else if the operation is Enter(entity, space) then
12: if operation is authorized then
13: if entity is an agent then
14: agent popspace ← agent popspace ∪ {entity}
15: else if entity is an elemental then
16: elemental popspace ← elemental popspace ∪ {entity}
17: end if
18: for all agent ∈ {TS} ∪ {Environment} do
19: Env in ag(Environment, agent, ‘entity entered space′)
20: end for
21: else
22: Env in ag(Environment,A, FAIL)
23: end if
24: else if the operation is Exit(A, space) then
25: /*Similar to Enter*/
26: end if

This algorithm manages TS in the environment. First on lines 1–9, the algo-
rithm processes the creation of new TS requested by agent A with policy rule.
If this operation is authorized in the environment policy, the corresponding TS
({A}, ∅, rule) is added to Transpace (line 3–4). Then, all agents—including A—
are informed about the successful creation (elementals cannot use this knowl-
edge). If the operation is forbidden, the environment informs A about a failure
on line 8.

Lines 10–22 deal with the entrance of entities in space, either a TS or the
environment. If this operation is authorized, entity is added to the corresponding
TS population (lines 12–16). Then the environment informs all agents in space
about the fact. In case of forbidden operation, a failure message is sent to entity.

Finally, the algorithm processes exits from line 23, similarly to entrances, but
one singular case is the exit of agents from the environment itself. In this case
the entity leaves the system.

This algorithm processes agent transfers, when the received operation has
the correct type (line 1). A target list is initialized on line 2 to contain tar-
get agents identities. Lines 3–15 determine the target list within TS where the

138 E. Platon, N. Sabouret, and S. Honiden

Algorithm 3. process agent transfers()
1: if the operation is Env out ag(FROM,TO, MESSAGE) then
2: target list ← ∅
3: for all space ∈ {TS} ∪ {Environment} where FROM∈ agent popspace do
4: for all rule ∈ policyspace do
5: if rule is none then
6: for all entity ∈ popspace where entity ∈ TO do
7: target list ← target list ∪ {entity}
8: end for
9: else if rule is overhearing then

10: for all agent ∈ agent popspace do
11: target list ← target list ∪ {agent}
12: end for
13: end if
14: end for
15: end for
16: if target list = ∅ then
17: Env in ag(Environment,FROM, fail)
18: else
19: for all entity ∈ target list do
20: if entity ∈ agent popspace then
21: Env in ag(entity,FROM, MESSAGE)
22: else if entity ∈ elemental popspace then
23: Env in ele(entity,FROM, MESSAGE)
24: end if
25: end for
26: end if
27: end if

source agent FROM is placed. For each of these TS, the environment identi-
fies targets according to the policy. overhearing means all agents in the TS are
target, whereas none means only the intended recipients are target (lines 5–14).
The target list is then processed. If empty, the source agent is informed about
the failure to identify targets (lines 16–17). Otherwise, the environment sends
forward the message to all targets (lines 19–26).

Grounding Social Interactions in the Environment�

Florian Klein�� and Holger Giese

Software Engineering Group, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany

fklein@upb.de, hg@upb.de

Abstract. While agents and environments are two intimately connected con-
cepts, most approaches for multi-agent development focus on the agent-specific
part of the system, whereas the handling of concerns related to the environment
is often neglected or delegated to implementation level constructs. In this paper
we demonstrate that building on an environment specification with expressive se-
mantics is instrumental in designing agents that are capable of flexible and com-
plex interactions. We propose a modeling approach that allows describing the
concrete aspects of a multi-agent system as well as its conceptual and cognitive
aspects within a single coherent conceptual framework by grounding all aspects
in the environment. This framework enables an efficient development process
built around the rapid prototyping and iterative refinement of multi-agent system
specifications by applying model-driven design techniques to the system in its
entirety.

1 Introduction

Agents and environments are two intimately connected concepts. Most widely accepted
definitions juxtapose agents with the environment they sense and act on. Wooldridge
and Jennings, for example, propose the following as the most basic definition of an
agent: ’An agent is a computer system that is situated in some environment, and that
is capable of autonomous action in this environment in order to meet its design objec-
tives.’ (emphasis theirs) [1]. However, little attention has traditionally been paid to the
environment per se, which many approaches dealing with cognitive agents see as a mere
stage on which the agents’ intelligent behavior unfolds, in essence a necessary evil that
should be treated as abstractly as possible.

Consequently, most approaches focus the analysis and design process on the agent-
specific part of the system, whereas the handling of concerns related to the environment
is delegated to agent frameworks, middleware, and other implementation level con-
structs. The environment’s impact on the cognitive aspects of the system is thus not
directly addressed in the model, but mostly implied in the available interfaces.

Research in the area of reactive agents emphasizes the situatedness of agents and
generally pays closer attention to the environment and the way agents perceive and af-
fect it. Despite the central role of the environment, however, the philosophy that ’the
� This work was developed in the course of the Special Research Initiative 614 - Self-optimizing

Concepts and Structures in Mechanical Engineering - University of Paderborn, and was pub-
lished on its behalf and funded by the Deutsche Forschungsgemeinschaft.

�� Supported by the International Graduate School of Dynamic Intelligent Systems.

D. Weyns, H. Van Dyke Parunak, and F. Michel (Eds.): E4MAS 2005, LNAI 3830, pp. 139–162, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

140 F. Klein and H. Giese

world is its own best model’ [2] basically places it outside the scope of explicit model-
ing. Again, the implications of the environment for the cognitive level are not explored
on a theoretical, more abstract level.

Only recently, the idea to view the environment as a first-order abstraction [3] has
begun to gain acceptance in the agent community. Especially through work on stig-
mergy [4,5,6], the idea that using the environment offers great potential for the efficient
coordination and control of multi-agent systems has been established.

We believe that building on an environment specification with expressive semantics
is instrumental in designing situated cognitive agents that are capable of flexible and
complex interactions. Only an adequate exposition of the environment at the modeling
level provides a generic mechanism allowing cognitive agents to make effective use of
the environment.

Towards this goal, we make two important contributions, extending our previous
work [7,8] towards a complete theory and comprehensive methodology:

1. At the conceptual level, we propose a modeling approach that allows describing
the concrete aspects of a multi-agent system, i.e. sensing and acting in physical and
virtual environments, and its conceptual aspects, i.e. communication, coordination
and social structure, within a single coherent conceptual framework by grounding
all aspects in the environment.

2. As a practical result, our approach allows applying model-driven design techniques
such as automatic code generation and formal model analysis techniques to the
system in its entirety, enabling an efficient development process built around the
rapid prototyping and iterative refinement of multi-agent system specifications.

At the heart of our conceptual contribution is the set of abstract principles that shape
the proposed conceptual framework. While these are independent of any specific nota-
tion and formalism, we chose to extensively build on established software engineering
techniques for our practical work. We use UML-based diagrams as an accessible graph-
ical formalism to specify both structure and behavior. The formal, operative semantics
required for rapid prototyping and verification of our system are provided by the theory
of graph transformation systems.

Returning to the basic idea of an agent interacting with an environment through sen-
sors and effectors, our modeling approach starts from an – essentially object-oriented
– model of the entities an agent could potentially interact with and the sensors and ef-
fectors available for interaction, comprising both structural and dynamic aspects. As a
second layer of abstraction, we add services that the environment provides to the agents
to the specification. Services are described in terms of and provided through entities,
and thus transparently integrated into the environment. Reusable templates allow the
quick incorporation of common services or agent frameworks. As the last level, we add
a conceptual layer defining social structures and coordination mechanisms. Inspired by
the way human interaction works, social rules act on properties and behavior that are
observable, as they would otherwise be neither realizable nor enforceable. Nonetheless,
the social context may provide conventions for the interpretation of such observations.
These allow the derivation of high level concepts such as commitments or group mem-
bership, which are useful for more sophisticated reasoning and yet grounded in the
observable environment.

Grounding Social Interactions in the Environment 141

Due to the principle of grounding, the environment model plays an important role
at any level. As a side effect, exposing the environment to the agents at the model
level enables flexible behavior and makes the agents’ interactions with and through the
environment amenable to formal analysis and verification. Finally, grounding combined
with the operative semantics of the employed specification technique ensures that all
aspects of the system can be operationalized.

The proposed way of modeling does not impose a specific process model, even
though the hierarchic layering implies certain dependencies. In order to explore the ap-
proach’s potential, we present our vision for a model-driven design process built around
prototyping and iteration. This design process comprises four phases (see Fig. 1):

Analysis

Social Design

Agent Design

Deployment

Requirements

4

Fig. 1. Overview of the proposed process

1. In the analysis phase, the environment and the overall requirements are modeled.
2. In the social design phase, the requirements are assigned to social structures; roles

and norms fulfilling them are defined; and the required services are added to the
environment. Formal verification and experimental validation using rapid prototyp-
ing techniques allow the evaluation and step-wise improvement of the design at this
early stage.

3. In the agent design phase, the actual agents are implemented, respecting the con-
straints of the social specification. The agents can then be evaluated and optimized
for performance, again using generated prototypes and a simulated environment.

4. In the deployment phase, the agents are tested in their production environment.
This requires replacing the implementations of those services, sensors and effectors
directly interfacing with the physical environment, but leaves all other aspects of
the specification unchanged.

We are currently implementing the tools and frameworks required for bringing this
vision to life within the scope of a student project. As our example for validation pur-
poses, we are using an automated warehouse.

Section 2 provides a short introduction to the notation. The proposed conceptual
framework is discussed in Sect. 3. The process is treated in more detail in Sect. 4. We
present our intermediate results in Sect. 5, followed by a review of related work and an
outlook on future work.

142 F. Klein and H. Giese

2 Foundations

For specifying the structural and behavioral aspects of the system, our approach em-
ploys UML-based notations. We chose them because visual specification languages
provide an accessible and intuitive way of modeling and because this allows us to build
on existing tools and practices from object-oriented software engineering.

We basically use UML class and object diagrams for the structure and employ story
patterns, an extended type of UML object diagrams based on the theory of graph trans-
formation systems (cf. [9]), for expressing structural changes and properties.

We provide a formal semantics for the employed concepts that are typically missing
from UML-based notations by mapping them to a formal model based on the theory of
graph transformations (cf. [10,11]), which serves as the basis for code generation and
formal verification.

2.1 Class and Object Diagrams

Class diagrams are the most fundamental UML concept employed in our approach.
They allow describing the underlying structure of the problem and solution domain
using classes and their relations. Class diagrams have been successfully employed to
model complex structures and relationships in the context of software systems. Further-
more, we employ them to describe the physical environment, using attributes to capture
physical characteristics such as mass, position, or velocity.

In Fig. 2, an example consisting of a forklift, crates, aisles, and shelves is repre-
sented as a class diagram.

Forklift

id: String
position : Vector3
velocity : Vector3

s Crate

id : String
position : Vector3

s Shelf

id : String
position : Vector3

s
carries stores

Aisle

id : String
position : Vector3

s
in

next toadjacent to

Fig. 2. Elements of a simple warehouse

Object diagrams can be used to depict specific configurations of objects which are
valid instances of a given class diagram. This can be employed for describing the topol-
ogy or the initial configuration of a system, e.g., laying out a warehouse floor and pop-
ulating the shelves with crates (see Fig. 3).

2.2 Story Patterns

Behavioral aspects and invariants of the system under consideration can then be mod-
eled using story patterns. In general, story patterns specify two instance situations, a
precondition (left hand side) that needs to be fulfilled before applying the pattern and
a postcondition (right hand side) that is fulfilled after the pattern is applied. We first

Grounding Social Interactions in the Environment 143

a2 : Aisle

id = 2”
position = (0,1,0)

s

“Aisle

a3 : Aisle

id = 3”
position = (0,2,0)

s

“Aisle

a1 : Aisle

id = “Aisle 1”
position = (0,0,0)

s s3 : Shelfs

id = “Rack 3”
position = (1,1,0)

s4 : Shelfs

id = “Rack 4”
position = (1,1,0)

s1 : S

id = “Rack 1”
position = (-1,0,0)

helfs

s2 : Shelfs

id = “Rack 2”
position = (-1,1,0)

f1 : Forklift

id = “Forklift 1”
position = (0,2,0)
velocity = (0,-0.5,0)

s

c1 : Crate

id = “Crate 1”
position : (-1,0,1)

s

c2 : Crate

id = “Crate 1 “
position= (1,1,1)

s
stores

stores

in

adjacent to

next to next to

next to next to

adjacent to

Fig. 3. A simple warehouse layout

fa : Forklifts fb : Forkliftsaa : Aislesin in

(a) Specification of a negative invariant

a2 : Aisle

id = “Aisle 2”
position = (0,1,0)

s

a3 : Aisle

id = “Aisle 3”
position = (0,2,0)

s4 : Shelf

id = “Rack 4”
position = (1,1,0)

ss2 : Shelf

id = “Rack 2”
position = (-1,1,0)

s

f1 : Forklift

id = “Forklift 1”
position = (0,2,0)
velocity = (0,1,0)

c2 : Crate

id = “Crate 1 “
position= (1,1,1)

s
stores

in

adjacent to

next to next to

f2 : Forklift

id = “Forklift 2”
position = (0,2,0)
velocity = (0,-1,0)

in

(b) Forbidden situation: Match for the invariant (shaded)

Fig. 4. Invariant: Two forklifts may not occupy the same space

look into invariant story patterns, where only the left hand side is present and the pat-
tern simply states that the situation should always (positive invariant) or never (negative
invariant) hold.

In Fig. 4, we model the constraint that two forklifts may not occupy the same
space in an aisle as a negative invariant, an elementary guarantee upheld by the laws
of physics. The positive invariant that every shelf is accessible, i.e. next to, an aisle is
specified in Fig. 5.

Forbidden elements may be indicated in story patterns by crossing them out. They
can be employed to describe rules that only match when no match for any one of their
forbidden elements is found, which allows specifying more complex rules.

144 F. Klein and H. Giese

sb : Shelfsaa : Aisles next to

(a) Positive invariant

a2 : Aisle

id = “Aisle 2”
position = (0,1,0)

a3 : Aisle

id = “Aisle 3”
position = (0,2,0)

s

s2 : Shelf

id = “Rack 2”
position = (-1,1,0)

f1 : Forklift

id = “Forklift 1”
position = (0,2,0)
velocity = (0,-0.5,0)

in

adjacent to

next to

c1 : Crate

id = “Crate 1”
position : (-1,0,1)

stores

(b) Valid situation: Invariant matches (shaded)

Fig. 5. Invariant: Every shelf is accessible from an aisle

fa : Forklifts

aa : Aisles ab : Aislesadjacent to

inin
<<destroy>> <<create>>

in

fb : Forklifts

(a) Pattern specification

a2 : Aisle

id = “Aisle 2”
position = (5,4,0)

a3 : Aisle

id = “Aisle 3”
position = (5,5,0)

sa1 : Aisle

id = “Aisle 1”
position = (5,3,0)

adjacent to

f1 : Forklift

id = “Forklift 1”

in

adjacent to

(b) Matching the precondition

a2 : Aisle

id = “Aisle 2”
position = (5,4,0)

a3 : Aisle

id = “Aisle 3”
position = (5,5,0)

sa1 : Aisle

id = “Aisle 1”
position = (5,3,0)

adjacent to

f1 : Forklift

id = “Forklift 1”

in

adjacent to

(c) Applying the postcondition

Fig. 6. A forklift moves to an aisle, provided it is unoccupied

If we also provide a right hand side for a rule, we can use it to describe behavior.
The right hand side may be integrated into the left hand side by using the stereotypes
�create� and �delete� for denoting elements which should be created resp. deleted
as a side-effect of the rule, which yields a compact representation. An example of such
a rule is depicted in Fig. 6, where a forklift moves to another aisle.

2.3 Tool Support

The open source UML CASE tool Fujaba 1 offers state of the art support for the model-
ing of class diagrams, object diagrams, and story patterns and thus enables model-driven
development based on the outlined set of UML concepts.

1 http://www.fujaba.de

Grounding Social Interactions in the Environment 145

The UML concepts introduced above, notably class diagrams and object diagrams,
and the proprietary extensions such as story patterns (cf. Fig. 2, 3, 4(a), and 6(a)) have
been given a formal semantics based on the theory of graph transformation systems
(GTS).

This formal semantics enables us to provide sound code generation for these mod-
els, which is both useful for deriving simulation prototypes from early models (cf. [9])
and for generating a correct implementation of the production system from the final
model that does not introduce implementation errors. Currently, the code generation of
Java and C++ source code is supported for all employed diagram types.

Given the formal semantics, we can further employ formal techniques to validate
and verify a given model, which is supported from inside the Fujaba CASE tool.

A first option is the GTS model checker GROOVE [12]. GROOVE imports GTS
specifications and computes all reachable states of the transformation system, optionally
bounded by the occurrence of a forbidden graph. With the help of a converter plug-in,
we are able to export models from Fujaba to GROOVE’s input format, check them,
and visualize identified counterexamples in Fujaba. However, this approach can only
be employed to verify finite state models with known initial configurations.

In order to be able to check invariant properties for the more general case of infinite
state systems as well, we developed an invariant checker [11,13] which exploits the
local character of the graph transformation rules to perform a fully automatic check
whether a given set of properties represent an inductive invariant of the system.

3 Approach

We now introduce the elements of the conceptual framework underlying our approach
in more detail.

The notion of agents interacting with an environment, be it digital or physical,
through sensors and effectors is central to our approach. We therefore make a clear
distinction between concrete entities that agents can perceive and/or manipulate di-
rectly and conceptual entities that only exist virtually. Conceptual entities are explicitly
derived from concrete entities by convention.

The concrete part of the model is predominantly descriptive in nature. Of course,
design decisions do have a profound impact on the model, as the choice of sensors
and effectors provided to the agents constrains what can be expressed. However, agents
in the implemented system can immediately interact with concrete entities, even in
heterogeneous open systems. The conceptual part of the model, on the other hand, is
engineered deliberately, with the system’s design objectives in mind. The way that con-
ceptual entities are grounded in the concrete entities is not immediately visible to the
agents. In order to allow an agent to interact with the system, this knowledge needs
to be made explicitly available to the agents or implied in their implementation. This
problem is also touched on by [3], who distinguish between natural and arbitrary proto-
cols and observe that the more natural protocols are, the easier ensuring interoperability
becomes.

In order to structure the design and treat these different concerns separately, we
divide the model into submodels that are layered on top of each other.

146 F. Klein and H. Giese

The environment model describes the environment, the concrete entities it contains,
and their behavior. It also specifies the agents (which are themselves concrete entities)
with their sensors and effectors.

The service model describes the infrastructure and protocols provided to the agents
by the environment. As services are provided and accessed through concrete entities, the
service model is predominantly concerned with the concrete parts of the system.

The social model introduces social structures, roles and norms along with the con-
ventions required to connect them to elements of the more concrete layers.

3.1 Environment Model

In the environment model, we want to describe all concrete entities and environment
processes as they are relevant to the agents. We try to model the entities as ’objectively’
as possible, i.e. as they are, not as the different agents perceive them, however. Concrete
entities can be physical – these entities need to be simulated while prototyping and are
later provided by the physical environment – or digital – which means they need to be
implemented in software both in the prototypes and the production system. The entities
and their attributes are modeled using class diagrams (as in Fig. 2).

We also model environment processes, using story patterns. They describe laws of
nature (e.g. gravity), the behavior of simple machines (e.g. a conveyor belt), and non-
deterministic external influences on the system (e.g. an entity arriving in the environ-
ment). They are useful both for simulating the system and reasoning about its expected
behavior at the agent level.

The agents and their sensors and effectors can now be added to the environment
model. Both sensors and effectors can only be applied to a specific context, i.e. the subset
of all entities that is, e.g., of the right type and physically close enough to the agent. The
story patterns that specify the effects of the sensors and effectors limit them to this
context.

Sensors transform concrete entities into perceptions. When generating perceptions,
the sensor usually only retains a subset of an entity’s attributes, may transform and
aggregate them, may introduce random errors with a specific probability distribution,
or may even fail to produce a perception with a given failure probability (see Fig. 7(a)).

Effectors create, manipulate and destroy entities, their attributes and associations.
Unlike typical AI-centric agent specifications that usually provide an agent with a set
of named actions or performatives, the semantics of the effector actions we specify are
fully transparent both for the agent and any formal method we would like to employ at
the agent level; i.e. we can seamlessly integrate the environment into our analysis of an
agent’s behavior. The formalism allows specifying any conceivable state transition of
the specified environment and is thus capable of expressing the effects of any effector,
now matter how complex (see Fig. 7(a)).

Obviously, in order to obtain a valid model, the specified effects need to stay within
the limits of what is reasonable and physically possible. Generally, the validity of any
results obtained by means of simulation and formal verification of the model largely
depends on the quality of the environment model, i.e., whether it is correct and appropri-
ate. This is less of a problem for digital entities, as – due to the reliance on proven object

Grounding Social Interactions in the Environment 147

<<agent>>
fa : Forklift

<<entity>>
aa : Aisle

<<entity>>
ab : Aisle

<<agent>>
fb : Forklift

<<perception>>
oba : Obstacle

position = fb.position+N(0,2)

<<create>>

in in

adjacent to

<<create>>
<<senses>>

(a) Sensing a nearby forklift using sonar

stores

next to

in

carries
<<create>>

<<destroy>>

<<agent>>
fa : Forklift

<<entity>>
sa : Shelf

<<entity>>
ca : crate

<<entity>>
aa : Aisle

(b) Picking up a crate from a shelf

Fig. 7. Sensor and Effector specifications

oriented formalisms – they can be represented by their actual design. It is somewhat
more problematic for physical entities, where we can only strive to provide as good an
approximation as possible. Our approach is better suited to describing structural adapta-
tion than continuous change. We currently only support modeling continuous processes
through difference equations, which we consider sufficient for most application areas,
though. If an in-depth treatment of the mechanical engineering aspects of the system is
essential, it is necessary to additionally apply our techniques for the design of hybrid
systems [14].

3.2 Service Model

As we have already suggested with the introduction of environment processes, entities
are not limited to being inert, monolithic objects, even if entities in the environment
model were limited to rather simple behavior. In principle, entities may be complex
and have extensive internal machinery that performs complex actions. The essential
distinction is that entities are never autonomous and do not possess internal motivation,
i.e. they are passive unless activated by an agent or an environment process.

The service model basically describes the infrastructure used by the agents. This
infrastructure is implemented as a set of services that are provided through dedicated
entities called facilities. Services can fall into various classes, e.g. life cycle management,
resource allocation, scheduling, communication, directory services, persistency, access
control, authentication, or application-specific functions. They can reach a high level of
sophistication, e.g. a distributed blackboard with consistency management.

Services mostly represent functionality that is normally provided by middleware. In-
deed, services will often be implemented using some type of middleware. We can differ-
entiate between production middleware that will be present in the final system, usually
providing lookup, messaging and other higher level functions, and prototyping middle-
ware that is mainly concerned with emulating the production environment, providing
services that will later be implicitly performed by the physical environment (e.g. com-
putation of the available physical context) or the production hardware (e.g. scheduling).

148 F. Klein and H. Giese

<<service>>
lsa : Directory

registered registered

<<entity>>

URL = tb.URL

msg2 : QueryReply

<<entity>>

queriedId = tb.id

msg1 : Query

recipient sender

recipientsender

<<create>>

<<create>> <<create>>

<<agent>>
jma : JobManager

id
URL

<<agent>>
tb : Transporter

id
URL

Fig. 8. A directory service replies to a query

As services are specified in terms of entities, we can apply the same object-oriented
modeling techniques using story patterns as for entity behavior and effector use (see
Fig. 8). However, as services can to some degree be standardized, they offer obvious
potential for reuse. Specifying the same services from scratch over and over again would
be tedious and inefficient. Templates encoding recurring desing patterns for reuse offer
a solution to this problem. Templates may range from simple patterns describing the
functionality of a single facility to complex systems of connected facilities representing
a whole agent platform, component framework or distributed computing library. This
means that after a service description for a particular solution has been modeled once, it
can be reused, adapted and combined with other building blocks in a modular manner.

3.3 Social Model

Now, where are the agents, organizations, roles, and communication languages in all
this? Frequently, agent-oriented methodologies that closely build on object-oriented
software engineering techniques are criticized for focusing on the technical aspects of
multi-agent systems and neglecting advanced agent-oriented abstractions, thus provid-
ing poor support for the coordination of multi-agent systems and essentially limiting
their scope to simple reactive agents. We, however, believe that such abstractions can in
fact be supported based on an object-oriented design.

Mentalistic concepts have proven useful for reasoning about autonomous, cognitive
agents. It is mainstream in agent-oriented research to assume that agents have inten-
tional stance, assigning beliefs, goals and intentions to them [15]. Despite its unques-
tionable appeal, formalisms based on intentional stance face some well-documented
problems, notably when used in the context of agent communication (languages). Such
formalisms often assume a specific implementation of the agents’ internals, which
severely limits their applicability to real-world scenarios. As the semantics of messages
depend on the state of an agent’s mind, they may not be decidable from an outside per-
spective [16]. Besides, the resulting specifications are notoriously complex, and proving
the conformance of an implementation may be impossible [17]. One solution that was
proposed to solve these problem is to model agents as observable sources that expose
a well-defined part of their internals in order to allow other agents to reason about their
beliefs and intentions [18].

Grounding Social Interactions in the Environment 149

Legal Stance. We propose using the environment to a similar effect, thus providing a
generic mechanism that is completely independent of the agents’ implementations. The
basic principle is to not reason about what an agent actually intends or believes, but
what an external observer, or more specifically other agents in the system, can know
or reasonably assume the other agent to believe or intend. It is inspired by the way hu-
man interaction, or more specifically human laws, work. Courts frequently infer beliefs
and intentions from situations, acts, and speech. Legal codes (in the continental tradi-
tion) devote significant effort to fixing the exact modalities of how and when a person
can profess an intention. In criminal codes, intent is a defining characteristic of various
crimes, and the punishment of attempted crimes hinges on establishing the intention
(e.g., an unauthorized person breaking into and hotwiring a car could clearly be sup-
posed to intend to steal it). In civil law, what a person should have known (e.g. caveat
emptor) and seems to have intended based on the given evidence is a common question.
We therefore call this view that is concerned with the professed intentions (and professed
beliefs) that can be deduced from the environment legal stance.

Conventions for interpreting the environment can be attached to any effector or en-
tity type. This specifically includes messages, allowing the specification of agent com-
munication languages, the predominant kind of social convention in current multi-agent
system. The implied professed intentions can be used to reason about the system at a
higher level of abstraction (see Fig. 12–14). Concepts such as assertions for communi-
cating beliefs, directives as a means of soliciting specific behavior, or commitments for
making behavioral guarantees (cf. [19]) help to structure and guide agent behavior.

Just like laws, professed intentions are artificial constructs that are only valid in a
specific social context. A group of agents needs to agree on a set of conventions before
it can become useful for governing their interaction.

Social Specification. This social context is provided by communities, which are – possi-
bly overlapping – groups of agents sharing the same conventions. Research into agent
organizations has shown that social structure is essential for designing complex, hetero-
geneous systems [20]. While our ideas are conceptually close to established work on
organizations, we chose the term ’community’ in order to avoid confusion because we
felt that ’organization’ suggests a greater degree of institutionalization, persistence, and
complexity than exhibited by many of the communities we have in mind, and, on the
other hand, we did not want to try to change established concepts by making additions
that are specific to our modeling approach to them.

The conventions used by a community are set down in the corresponding community
type. The specification of a community type mostly consists of various types of norms,
expressed in terms of observable entities by means of story patterns. In detail, a commu-
nity type defines the following:

– a set of roles that can be assumed by agents (Fig. 9(a)),
– a set of professed intentions that can be attributed to agents (Fig. 9(b)),
– instantiation norms for instantiating communities, as there may be multiple instances

(Fig. 10),
– binding norms for joining and leaving the community, and for assuming and relin-

quishing roles (Fig. 11),

150 F. Klein and H. Giese

– conventional norms that specify social conventions, i.e. generate professed intentions
from observations (Fig. 12,13(a)),

– behavioral norms specifying allowed or required behavior, which need to be com-
patible to the agents’ effector specifications (Fig. 13(b)), and

– a set of community types that can be used to form subcommunities contained in the
community.

<<community type>>
TaskHandling

<<role>>
Member

<<role>>
Worker

<<role>>
Supervisor

<<in>>

(a) Roles defined by the community type

<<commitment>>
Compensate

<<permission>>
CheckOutCrate

<<directive>>
CommissionCrate

<<commitment>>
TransportationTask

(b) The set of professed intentions

Fig. 9. Community Type for completing transportation tasks

<<entity>>
j1 : Job

<<role>>
jma1 : Member

<<community>>
th1 : TaskHandling

<<agent>>
jma : JobManager

manages

<<in>>

<<create>>

<<assumes>>

<<create>>
<<create>><<create>>

Fig. 10. Instantiation norm instantiating a community

<<role>>
su1 : Supervisor

<<role>>
jma1 : Member

<<community>>
th1 : TaskHandling

<<agent>>
jma : JobManager

<<in>>

<<assumes>>

<<create>>

<<create>>

<<assumes>>

<<in>>

<<create>>

(a) Binding norm for JobManager

<<role>>
wo1 : Worker

<<role>>
fa1 : Member

<<community>>
th1 : TaskHandling

<<agent>>
fa : Forklift

<<in>>

<<assumes>>

<<create>>

<<create>>
<<in>>

<<assumes>>

<<create>>

(b) Binding norm for Forklift

Fig. 11. Binding member agents to more specific roles by type

<<agent>>
fa : Forklift

<<commitment>>
tca : TransportationTask

<<entity>>
ca : Crate

<<entity>>
dest1 : Shelf

carries

destination <<create>>

<<create>>
<<intention>>

(a) Carrying a crate entails the commitment
to transport it to its destination

<<agent>>
fa : Forklift

<<commitment>>
tca : TransportationTask

<<entity>>
ca : Crate

<<entity>>
dest1 : Shelf

carries

destination <<destroy>>
<<intention>>

stores
<<create>> <<destroy>>

<<destroy>>

(b) The commitment is fulfilled by delivering
the crate

Fig. 12. Conventional norms for making and fulfilling commitments

Grounding Social Interactions in the Environment 151

<<agent>>
fa : Forklift

<<entity>>
ca : Crate

recipient<<intends>>

<<permission>>
co : CheckOutCrate

<<directive>>
cc: CommissionCrate

<<agent>>
jma : JobManager

<<intends>>

item

object

subject

<<create>>
<<create>><<create>>

<<create>>

(a) Conventional norm: the directive implies
a permission to actually pick up a crate

<<agent>>
fa : Forklift

<<entity>>
ca : Crate

carries

<<permission>>
co: CheckOutCrate

object
subject

<<create>>

<<entity>>
dest1 : Shelf

stores
<<destroy>>

(b) Behavioral norm requiring this permis-
sion as a precondition

Fig. 13. Conventional and Behavioral norms interact to control behavior

<<role>>
Client

<<role>>
Provider

<<entity role>>
Sink

<<entity role>>
Object

<<entity role>>
Compensation

<<commitment>>
Compensate

provides

received

consumescontrols

provides<<intends>>

(a) The culture is modelled in terms of roles

<<role>>
cli : Client

<<role>>
prv : Provider

<<entity role>>
sia : Sink

<<entity role>>
obja : Object

<<commitment>>
cc : Compensate

provides

consumescontrols

<<intends>>
<<create>>

<<create>>

<<create>>

<<create>>

(b) Norm: Providing the service

<<role>>
cli : Client

<<role>>
prv : Provider

<<entity role>>
co : Compensation

<<commitment>>
cc : Compensate

received

provides<<intends>>

<<create>>
<<create>>

<<create>><<destroy>>

(c) Norm: Compensating the provider

Fig. 14. Culture regulating payment for goods or a service in a generic manner. A concretization is
used as a sub-community type inside the above TaskHandling community type by JobManagers
(Client) for paying Forklifts (Provider) after delivering a crate.

The specification is expressed entirely in terms of classes and objects, which are
marked up with stereotypes in order to indicate their specific semantics. Therefore,
it is possible describe community types as graph transformation system, which can be
seamlessly integrated with the graph transformation system of the environment model to
yield a comprehensive specification of the system’s physical and social behavior.

Community types can specify complex organizations, but may as well describe the
ad-hoc interaction between a pair of agents. In general, a community type deals with a
particular problem, which usually grows in complexity in proportion to the community
type’s position in the hierarchy.

152 F. Klein and H. Giese

As there may be commonly recurring subproblems (e.g., collision avoidance, job
assignment, coordinating distributed problem solving), we once again propose the use
of templates or design patterns. We call these patterns cultures. Cultures extract the
essence of a community type by abstracting from the concrete environment. This is done
by replacing the concrete agent and entity types used in norms (e.g. ’car salesman’,
’motorist’, ’car’) with more generic agent (’buyer’, ’seller’) and entity (’merchandise’)
roles (see Fig. 14). A culture can be formally verified in order to prove that it correctly
solves a problem, or, more specifically, satisfies a set of requirements using our work on
the verification of coordination patterns [21]. It may then be reused in future systems
to derive a community type inheriting these properties by binding appropriate concrete
types or sets of types from the environment model to these abstract roles.

Even though community types impose requirements and limitations on the
capabilities of agents, they do not restrict the actual implementation of agents in any
way, making the approach mostly agnostic with respect to their internal architecture.
As the specification is only concerned with observable behavior, correctly implement-
ing it comes down to behaving correctly in the environment. The agents have complete
’freedom of thought’, even though certain mentalistic notions are certainly implied by
particular behavior through conventions, which may require some sort of compatible
internal model in order to be able to conform to more intricate behavioral requirements.

4 Process

In order to show how the proposed concepts can benefit the development of situated
multi-agent systems, we now describe the process from requirements engineering to
deployment as we envision it. As mentioned in the introduction, we divide this process
into analysis, social design, agent design and deployment. Figure 15 gives an overview
of the phases and their main objectives.

Even though each phase deals with clearly defined aspects of the system, a linear
progression through the phases should be seen as an idealization. Each phase builds
upon the output of the previous phase. Within the later phases, prototyping is used to
enable iterative improvement of the specification. In practice, it will be necessary to
revisit previous phases and make adjustments in this context.

4.1 Analysis Phase

The analysis phase is mainly concerned with the specification of the environment model.
The structure and behavior of the environment are considered as fixed at this stage. Using
methods for the identification of classes from traditional object-oriented analysis, the
relevant entities from the system’s prospective environment can therefore be identified
and modeled. Likewise, the behavior of these entities may be observed and modeled
through environment processes. Such services as are already provided by the environ-
ment are also recorded at this time. The result is a domain model of the environment
which forms the core of the ontology used in later phases. As agents (as physical enti-
ties), sensors, and effectors are part of the environment model, they are included in the
analysis phase. This is only logical, as any model is, by a common definition, driven by
a specific purpose, which in our case is to represent the environment as relevant to the

Grounding Social Interactions in the Environment 153

E
nv

ir
on

m
en

t
S

er
vi

ce
S

o
ci

al
A

g
en

t

Requirements

(a) Analysis: Modeling Requirements and the
Environment

E
nv

ir
on

m
en

t
S

er
vi

ce
S

o
ci

al
A

g
en

t

(b) Social Design: Designing Communities and
Services

E
nv

ir
on

m
en

t
S

er
vi

ce
S

o
ci

al
A

g
en

t

(c) Agent Design: Designing agents’ behavior
and internals

4

E
nv

ir
on

m
en

t
S

er
vi

ce
S

o
ci

al
A

g
en

t

(d) Deployment: Replacing the simulated envi-
ronment

Fig. 15. Phases of the proposed process in more detail. The UML diagrams merely serve as iconic
representatives for the respective models (see Fig. 12(b), 7(b), 8, and 2 for full-scale versions).

agents. Without at least a basic knowledge of their capabilities, the environment model
could not fulfill this purpose. Nonetheless, it could be argued that the agent types and
the sensors and effectors available to them are design decisions that have no place in

154 F. Klein and H. Giese

analysis. While it is true that the addition of new agent types may become necessary
in the subsequent social design phase, and the exact capabilities of the sensors and
effectors may not be fixed before the agent design phase, we do, however, consider it
an important part of analysis to identify prospective classes of agents and establish a
general idea of their (potential) capabilities with respect to the environment. In prac-
tice, especially when working with (mechanical) agents in phyisical environments, the
agents and their capabilities are usually given to a large extent before the design of the
multi-agent system even starts.

The second concern of the analysis phase are the system requirements. Again, es-
tablished requirements analysis can be used to identify functional and non-functional
requirements, as there is nothing inherently agent-specific in the requirements – after
all, agent-orientation is supposed to be a solution, not part of the problem. The result-
ing requirements do not need to be expressed using a specific notation, they can even be
informally documented in textual form. If a requirement is to be the subject of formal
verification later on, it is however preferable to specify it directly as a story pattern over
the environment model. It is furthermore desirable to structure and rank the requirements.

4.2 Social Design Phase

The social design phase begins by taking these requirements, breaking them down into
suitable subsets, and assigning them to agent communities. These communities are then
responsible for ensuring that the systems meets the requirements in question by defining
appropriate norms.

For each set of requirements, a community type which is capable of dealing with this
responsibility is then designed. This will usually include the definition of subcommuni-
ties concerned with even more specific tasks, which ultimately leads to a hierarchy of
community types whose bottom elements are basic interaction patterns dealing with sim-
ple, manageable problems. At this time, cultures that address a specific requirement can
be applied to the system. As cultures may themselves contain more specific subcultures,
instantiating a culture may create a whole hierarchy of community types.

When applying cultures or devising new solutions to problems, the designer will
need to take the agents’ capabilities (as expressed by their sensors and effectors) into
account. It is not helpful to specify behavioral norms that agents cannot enact, or con-
ventional norms that depend on something agents cannot sense. If the physical design of
the agent is under the designer’s control, it is possible at this point to add new capabil-
ities through new sensors and effectors. The most common way to provide agents with
additional capabilities, however, is to specify services that provide them. Also, the idea
behind communities is using interaction in order to achieve goals beyond the reach of
the individual agents. Thus, communities can themselves provide new capabilities that
can be used as a bootstrap by other communities. For example, in order to allow every
agent in a system to communicate with any other agent, one could introduce a network
of access points capable of relaying messages and a community type that requires agents
to register with a distributed directory, instead of upgrading the agents’ antennas.

Together, the community types need to result in a consistent specification. If the re-
quirements are not orthogonal, i.e., the norms of the community types constrain the same
effector or concern the same entities, different community types might be in conflict. E.g.,

Grounding Social Interactions in the Environment 155

if a community type responsible At this point, we try to spot cases where conforming
with all norms is theoretically impossible. Other than that, we merely strive to keep de-
pendencies between community types as weak as possible and defer the task of actually
reconciling conflicts to the agent design phase.

Once all relevant community types have been specified, the model can be validated.
Individual community types can be formally verified: As both their norms and the be-
havior of the environment can be modeled as a graph transformation system, we can
apply the above-mentioned invariant checking techniques [11] in order to prove certain
required properties, e.g. the absence of accidents or safety hazards. We can also export
the model into GROOVE, which allows us to systematically explore the state space for
specific initial configurations up to a certain size. Other aspects such as requirements
concerning efficiency and performance or emergent properties of complex systems that
cannot be assessed through formal methods require empirical validation by means of a
prototype.

As the complete specification, from entities and environment processes to roles,
norms, and professed intentions, is expressed by class diagrams and story patterns, it
is possible to create an executable prototype using code generation. The environment
model simply needs to be run in order to simulate the environment, even though it is
usually advisable to make use of some kind of prototyping middleware in the imple-
mentation of the model in order to achieve more efficient simulation. As for the social
model, the generated implementation tries to apply all applicable norms to the system
and keeps track of the result by instantiating explicit representations of communities and
professed intentions. For each agent, the system non-deterministically choses an action
from the set of enabled sensor and effector applications. This makes it possible to as-
sess whether the system’s behavior stays within the intended limits. When a constraint
specified by a community type is violated or an agent gets stuck in a state with no valid
course of action left, this is detected and reported by the system. It may indicate a
conflict within or between communities. As corrections in the model can immediately
be tested in a new prototype, iterative, step-wise improvements can be applied to the
design quickly and conveniently. Starting from the earliest stages of the design, it is
possible to generate prototypes from specifications in order to evaluate them.

4.3 Agent Design Phase

Once the social specification meets all pertinent formal requirements and appears to
address all other requirements, the actual agents can be implemented, respectively spec-
ified. Even though any architecture producing the appropriate output is acceptable, it is
convenient to start from the generated implementation of the social model. For behavioral
norms that specify concrete, reactive behavior, adding strategies for intelligently chos-
ing between the available options is a quick way to obtain a reasonable implementation.
Behavioral norms that are of a more declarative nature, e.g., concerning the commitment
to travel to a specific location by a given deadline, require more elaborate strategies and
algorithms that cannot simply be deduced, but need to be designed.

In practice, devising an implementation that respects the constraints of all pertinent
communities may not be a trivial task. It is facilitated by the ability to test prototypes
of the agents in the simulated environment. The generated social model is reused for

156 F. Klein and H. Giese

monitoring conformance with the specification. This time around, the model does not
randomly choose a course of action for the agents, but merely checks whether the ex-
hibited behavior was enabled, flagging violations. Agents can also be benchmarked ex-
tensively in order to optimize their performance.

4.4 Deployment Phase

Once the agent design conforms to the social specification and has proven itself in the
simulated environment, it can be moved to its production environment for testing. An
appealing feature of the proposed approach is that this mainly means replacing the sim-
ulated parts of the system with their physical counterparts. Provided that it was mod-
eled correctly, the environment model can simply be dropped. At the service level, the
prototyping middleware is replaced by the production middleware. The overall com-
plexity of the software system decreases, as physics, processes and physical constraints
(e.g. context) no longer need to be replicated in software; however, the middleware that
processes sensor input and interprets effector commands becomes significantly more
complex internally.

The model of the actual agents remains unchanged, as their interfaces are unchanged.
Using a specific real-time runtime environment supported by Fujaba’s code generator,
we can actually reuse the exact same code for simulation and hardware tests [22]. Of
course, it is nonetheless necessary to perform a sufficient number of tests in order to
ensure that there were no errors or oversimplifications in the environment model that
lead to significant discrepancies between simulated and actual behavior (cf.[23]).

5 Experiences

In order to evaluate our approach, we intend to apply it to a large, realistic scenario. Im-
plementing a non-trivial example and testing the iterative development process further-
more requires appropriate tool support. Within the scope of the project group intrapid,
consisting of 18 students and currently in its second and final semester, we are working
towards these objectives.

We are basing our work on Fujaba for Eclipse, a port that integrates the Fujaba
CASE tool into the Eclipse platform as plugins. We are implementing our extensions as
a UML Profile, i.e., we add the appropriate stereotypes from our conceptual framework
to the metamodel and define the different variants of story patterns and class diagrams
we use with their respective constraints and semantics. We are also adding a config-
urable translation layer that transforms these diagrams into input for the existing code
generation mechanisms by joining them together in the correct manner.

Another important part of the project is the work on ’prototyping’ middleware that
supports the efficient simulation, visualization and run-time manipulation of
environments. At the agent level, a component-based ’production’ middleware is pro-
viding the internal infrastructure.

The ultimate goal is to use the developed tools and middleware for the design of
a large and complex logistics management application. The scenario comprises ware-
houses and various types of robotic agents moving goods inside and between them. It
was chosen because logistics are a common application area of agent-based approaches

Grounding Social Interactions in the Environment 157

that offers potential for optimization and exploiting synergies between agents. It also
requires relatively simple agents, which, however, need to flexibly interface in different
ways.

In order to give the students the opportunity to familiarize themselves with the ap-
proach and get a better grasp of the underlying concepts, we implemented a very simple
scenario as a prototype. The idea was to keep the application specific part as basic as
possible and focus on a sound implementation of the meta model and the infrastruc-
ture as a preparation for the work on tools and middleware in the second phase. The
prototype was therefore not designed to validate the approach in general, but show the
feasibility of some of our ideas and identify challenges.

We use the phases of the development process to structure the presentation of the
prototype and our experiences.

5.1 Analysis Phase

The scenario consists of an aquarium containing a swarm of fish hunted by sharks.
The environment is extremely simple: there are walls, cylindrical obstacles that may
be placed dynamically by the user, sharks, and prey. Sharks and prey have sensors for
sensing other fish (sharks have longer range, but a more limited field of vision, prey have
a greater field of vision but limited range) and an effector (tail fin) for propulsion (sharks
are faster, but prey is more agile). Sharks also have an effector for eating prey fish. The
context of this latter effector is limited to fish in close proximity that are, literally, right
under a shark’s nose. There are no more advanced sensors and effectors, specifically
none enabling direct communication.

The requirements were straight-forward: sharks were supposed to eat as many fish
as possible, prey was to keep together and try to stay alive.

The main challenge at this level was designing and implementing the modular pro-
totyping middleware needed to simulate the physical behavior of the system, compute
the sensors’ contexts, visualize the simulation and allow users to place obstacles into the
aquarium. See Fig. 16 for a screenshot.

5.2 Social Design Phase

The requirements easily lead to the two community types shoal (for the prey) and pack
(for the sharks).

The shoal type is quite basic. The behavioral norms are reactive in nature, describing
how fish should react to seeing other fish or shark. They are modeled on the well-known
boid paradigm [24], i.e., fish move towards the center of mass of the fish they see, try
to keep their distance from neighboring fish and obstacles and match their velocity with
other fish. Besides these basic behaviors, they exhibit a strong repulsion from sharks and
places where sharks have recently been seen and a weak tendency to keep away from
the outer parts of the aquarium. The behavioral norms require only simple processing of
the fish and almost directly map sensor input into effector output.

Perhaps contrary to intuition, a large shoal of fish is not represented by a single
community. It is rather composed of many smaller communities consisting of a fish play-
ing the ’active’ role and every fish it can see, playing the ’passive’ role. As visibility

158 F. Klein and H. Giese

Fig. 16. Screenshot from the prototype

between fish is not a symmetric relation, each of the communities from the same ’shoal’
may have slightly different members. The behavioral norms of the community only have
implications for the behavior of the ’active’ fish at the center. While this may seem like
a degenerate case of a community, it illustrates one important principle of community
type design: A design that operates by governing behavior based on observable actions
and states will only work as intended if it can reasonably be assumed that an agent ex-
pected to exhibit a certain behavior can actually make the observation that is supposed
to trigger it. More specifically, there needs to be a conventional norm that can generate a
professed intention to that effect (in this case the assertion that ’an agent knows what it
sees’, combined with the sensor context specification). In the example, as all prey fish
implement the same community type, behavior is still consistent – ’as if’ all fish were in
the same community.

The sharks’ pack community type is based on similar behavioral norms. Sharks tend to
keep greater distances, but match velocities in order to attack the prey in a coordinated
manner. Obviously, sharks are strongly attracted by prey. There are simple conventional
norms for creating professed intentions for coordinating shark behavior, e.g. determining
which fish a shark is currently hunting so that sharks may cooperate in their attacks and
do not go after the same fish.

Substantial effort was spent on implementing the shoal community type in the way
it will later be automatically generated from the social model. This required creating
explicit representations of the relevant meta model elements, namely community types,
communities, behavioral norms (for specifying expected behavior), and binding norms
(for determining membership in communities). As the behavioral norms are determin-
istic (unlike in typical future systems, where norms permit non-deterministic choice or
may even only state goals that need to be achieved), a conforming implementation of
agent behavior could be achieved by explicitly checking and applying behavioral norms.

Grounding Social Interactions in the Environment 159

5.3 Agent Design Phase

The sharks were implemented as simple intelligent agents. They are deliberately not
implementing an explicit ’community’ concept, but simply conform to the community
type specification by implementing the required behavior. This demonstrates both how
the approach can be used as a fairly architecture-agnostic specification technique and
that the essence of the specification is in the observable behavior.

The prey fish were not implemented at all, as executing the community type speci-
fication was already sufficient for obtaining the desired behavior. All that was required
was a stub for relaying the commands from the social model to the effector. The com-
munity type specification simply applies the behavioral norms to every fish in a fish’s
community, aggregates the results into a single impulse and passes the result down to
the fin effector of the agent stub.

The ability to run a ’prototype’ of one type of agent alongside an actual agent imple-
mentation only made a small difference in the current context, but should be interesting
for the development of more complex systems.

The prototype allowed experimenting on the emergent properties of the system. By
changing sensor and effector parameters and varying the thresholds and intensities for
the behavioral norms, the balance of the system could be shifted and diverse behavioral
patterns be induced.

For obvious reasons, there was now deployment phase.
In all, the prototype has already hinted at the potential of the approach, but has also

helped to identify challenges. The efficient evaluation of social norms will be essential
for prototyping and monitoring large systems. For truly assessing the added value of
the approach on the conceptual level, we will have to wait for the full scale logistics
scenario incorporating multiple community types and communication – the current state
is already promising, though.

6 Related Work

Even though our methodology is clearly rooted in object-oriented software engineering
traditions and techniques, the conceptual framework for grounding social interactions
in the environment is based on agent-oriented abstractions and influenced by existing
research from the domain.

The idea of the legal stance is both related to work on intentional stance (cf. [1]),
the social level [25] and social order [26]. It was inspired by Viroli and Omicini’s idea
of agents as an observable source [18], but goes beyond it by basing the interaction
on the environment. This provides a more flexible, general mechanism, at the cost of
diminishing the ability to formally reason about the observations from an AI perspec-
tive. The categories of professed intentions we use stem from Singh’s work on agent
communication languages [16].

The concept of social structure was established by Ferber’s organizational models
[20]. As discussed, Communities combine an intentionally broad interpretation of what
constitutes social structure with pattern-based software engineering techniques.

160 F. Klein and H. Giese

Environments still play a minor role in current multi-agent systems research, even
if this is beginning to change. However, there are several papers putting forward similar
ideas concerning the role of the environment:

Weyns et al. [3] discuss several functions of environments that are also important
to our approach, namely structuring the system (for defining localized communities),
providing a shared state (by storing the evidence of professed intentions), providing
service support (through facilities), enabling coordination (this, again, is the key idea
of legal stance) and acting as a regulating entity (by means of laws implemented as
environment processes). The practical work on virtual environments [27,28] could be
seen as a real world application of the idea of bootstrapping by means of services.
Our main contribution is offering systematic support of such solutions at the level of a
model-driven development process.

Recent work by Omicini et al. [29] proposes ’artifacts’ as a general way to struc-
ture the interaction between agents and the environment. In a way, artifacts and facilities
represent similar concepts. However, facilities are rooted in the software engineering
perspective and offer concrete, transparent behavioral specifications, whereas artifacts
come from an AI background and provide more abstract interfaces based on messages,
which facilitates standardization but makes analysis of the services they actually pro-
vide harder.

7 Conclusion and Future Work

We have presented a conceptual framework that grounds social interactions in the en-
vironment. We have moreover proposed an iterative design process that makes use of
the ability to generate executable prototypes from high-level specifications and conduct
formal analysis, starting with the early phases.

While the results obtained from our implementation work are encouraging, it is too
early to actually draw any conclusions concerning the applicability and validity of our
approach. We did, however, establish that our ideas for modeling the concrete parts
of the system centered around entities, sensors and effectors, are feasible and work as
intended.

We hope to complete our work on the development tools in the foreseeable future
and be able to test them on a large multi-agent system using sophisticated coordination
mechanisms.

At the same time, we will continue our work on the theoretical underpinnings of our
approach. We hope to be able to extend the scope of formal verification techniques in
the social model and assist in the identification and reconciliation of conflicts between
norms.

References

1. Wooldridge, M., Jennings, N.: Intelligent agents: Theory and practice. Knowledge Engineer-
ing Review 10 (1995) 115–152

2. Brooks, R.A.: Intelligence Without Reason. In Myopoulos, J., Reiter, R., eds.: Proceed-
ings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-91), Sydney,
Australia, Morgan Kaufmann publishers Inc.: San Mateo, CA, USA (1991) 569–595

Grounding Social Interactions in the Environment 161

3. Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments for multiagent
systems state-of-the-art and research challenges. In Weyns, D., Parunak, H.V.D., Michel, F.,
eds.: Environment for multi-agent systems: first international workshop, 2004, New York,
NY. Volume 3374 of Lecture Notes in Computer Science. (2004) 1–47

4. Bonabeau, E.: Editor’s introduction: Stigmergy. Artificial Life 5 (1999) 95–96
5. Fenster, M., Kraus, S., Rosenschein, J.S.: Coordination without communication: Experimen-

tal validation of focal point techniques. In: Proc. of the 1st Int. Conf. on Multiagent Systems
(ICMAS), San Francisco, CA, USA, The MIT Press (1995) 102–108

6. Parunak, H.V.D., Brueckner, S., Sauter, J.A.: Digital pheromones for coordination of un-
manned vehicles. In Weyns, D., Parunak, H.V.D., Michel, F., eds.: Environments for Multi-
Agent Systems, First International Workshop, New York, NY, USA, 2004. Volume 3374 of
Lecture Notes in Computer Science., Springer (2005) 246–263

7. Klein, F., Giese, H.: Separation of concerns for mechatronic multi-agent systems through
dynamic communities. In Choren, R., Garcia, A., Lucena, C., Romanovsky, A., eds.: Soft-
ware Engineering for Multi-Agent Systems III. Volume 3390 of Lecture Notes in Computer
Science (LNCS). Springer Verlag (2005) 272–289

8. Klein, F., Giese, H.: Analysis and Design of Physical and Social Contexts in MultiAgent
Systems using UML. In et al., R.C., ed.: Proc. of the 4th Workshop on Software Engineering
for Large-Scale Multi-Agent Systems at ISCE, St. Louis, MO, USA, IEEE (2005) 1–7

9. Köhler, H., Nickel, U., Niere, J., Zündorf, A.: Integrating UML Diagrams for Production
Control Systems. In: Proc. of the 22nd International Conference on Software Engineering
(ICSE), Limerick, Irland, ACM Press (2000) 241–251

10. Zündorf, A.: Rigorous Object Oriented Software Development. Habilitation, Univer-
sity of Paderborn (2001) Available online: http://wwwcs.upb.de/cs/ag-schaefer/Personen/
Ehemalige/Zuendorf/AZRigSoftDraft 0 2.pdf.

11. Giese, H., Schilling, D.: Towards the Automatic Verification of Inductive Invariants for Invi-
nite State UML Models. Technical Report tr-ri-04-252, University of Paderborn, Paderborn,
Germany (2004)

12. Rensink, A.: Towards model checking graph grammars. In Leuschel, M., Gruner, S., Presti,
S.L., eds.: Workshop on Automated Verification of Critical Systems (AVoCS). Technical
Report DSSE–TR–2003–2, University of Southampton (2003) 150–160

13. Becker, B., Giese, H., Schilling, D.: A plugin for checking inductive invariants when mod-
eling with class diagrams and story patterns. In: Proc. of the 3rd International Fujaba Days
2005, Paderborn, Germany. (2005)

14. Burmester, S., Giese, H., Oberschelp, O.: Hybrid UML Components for the Design of Com-
plex Self-optimizing Mechatronic Systems. In: Informatics in Control, Automation and Ro-
botics. Kluwer Academic Publishers (2005) to appear.

15. Rao, A., Georgeff, M.: BDI Agents: From Theory to Practice. In: Proceedings of the 1st
International Conference On Multi Agent Systems, San Francisco, USA (1995)

16. Singh, M.P.: On Competitive On-Line Algorithms for the Dynamic Priority-Ordering Prob-
lem. IEEE Computer 31 (1998) 40–47

17. Wooldridge, M.: Verifiable semantics for agent communication languages. In: Proceedings
of the 3rd International Conference on Multi Agent Systems (ICMAS98), Paris , France.
(1998) 349–356

18. Viroli, M., Omicini, A.: A specification language for agents observable behavior. In: Pro-
ceedings of the International Conference on Artificial Intelligence (ICAI) 2002 (Las Vegas,
US), CSREA Press (2002) 321–327

19. Singh, M.P.: The intentions of teams: Team structure, endodeixis, and exodeixis. In: ECAI.
(1998) 303–307

162 F. Klein and H. Giese

20. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in
multi-agent systems. In: Proceedings of the 3rd International Conference on Multi Agent
Systems (ICMAS98), Paris , France. (1998) 128–135

21. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the Compositional
Verification of Real-Time UML Designs. In: Proc. of the European Software Engineering
Conference (ESEC/FSE), Helsinki, Finland, ACM Press (2003) 38–47

22. Burmester, S., Giese, H., Klein, F.: Design and Simulation of Self-Optimizing Mechatronic
Systems with Fujaba and CAMeL. In Schürr, A., Zündorf, A., eds.: Proc. of the 2nd Inter-
national Fujaba Days 2004, Darmstadt, Germany. Volume tr-ri-04-253 of Technical Report.,
University of Paderborn (2004) 19–22

23. Broeckman, B., Notenboom, E.: Testing Embedded Software. Addison Wesley (2003)
24. Reynolds, C.: Flocks, herds, and schools: A distributed behavioral model. Computer Graph-

ics 21 (1987)
25. Jennings, N.R., Campos, J.R.: Towards a social level characterisation of socially responsible

agents. IEE Proceedings on Software Engineering 144 (1997) 11–25
26. Castelfranchi, C.: Engineering social order. In: Engineering Societies in the Agent World,

First International Workshop, ESAW 2000, Berlin, Germany, August 21, 2000, Revised Pa-
pers. Volume 1972 of Lecture Notes in Computer Science., Springer (2000) 1–18

27. Weyns, D., Schelfthout, K., Holvoet, T., Lefever, T.: Decentralized control of E’GV trans-
portation systems. In Pechoucek, M., Steiner, D., Thompson, S., eds.: 4rd International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005), July 25-29,
2005, Utrecht, The Netherlands, ACM (2005) 67–74

28. Schelfthout, K., Holvoet, T.: Objectplaces: An environment for situated multi-agent sys-
tems. In: 3rd International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2004), 19-23 August 2004, New York, NY, USA, IEEE Computer Society (2004)
1500–1501

29. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination artifacts:
Environment-based coordination for intelligent agents. In: 3rd International Joint Conference
on Autonomous Agents and Multiagent Systems, 19-23 August 2004, New York, NY, USA.
(2004) 286–293

D. Weyns, H. Van Dyke Parunak, and F. Michel (Eds.): E4MAS 2005, LNAI 3830, pp. 163 – 186, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Survey of Environments and Mechanisms for
Human-Human Stigmergy*

H. Van Dyke Parunak

Altarum Institute, 3520 Green Court, Suite 300, Ann Arbor, MI 48105
van.parunak@altarum.org

Abstract. Stigmergy (the coordination of agents through signs they make and
sense in a shared environment) was originally articulated in the study of social
insects. Its basic processes are much simpler than those usually used to model
human-level cognition. Thus it is an attractive way to coordinate agents in engi-
neered environments such as robotics or information processing. Stigmergic
coordination is not limited to insects. Humans regularly use environmentally-
mediated signals to coordinate their activities. This paper develops a schema for
analyzing stigmergy among humans, discusses examples (some using a compu-
tational environment and others antedating digital computation), and suggests
how the use of such mechanisms may be extended.

1 Executive Summary

Human-Human Stigmergy is pervasive. A wide range of pre-computer social systems
fit the pattern of stigmergic coordination, and have provided a rich set of metaphors
on which a diverse set of computer-enabled systems for enabling human stigmergy
have been constructed. It would be more difficult to show a functioning human insti-
tution that is not stigmergic, than it is to find examples of human stigmergy.

The reason that human-human stigmergy is so common can be understood from the
growing body of experience in constructing large-scale distributed computing systems
with resource-constrained elements. Central control of such systems is not feasible,
since resource-constrained components cannot cope with the large-scale, distributed
aspects of such systems. The central insight of stigmergy is that coordination can be
achieved by resource-constrained agents interacting locally in an environment. Two
fundamental principles govern the success of this strategy.

1. No matter how large the environment grows, because agents interact only locally,
their limited processing capabilities are not overwhelmed.

2. Through the dynamics of self-organization, local interactions can yield a coherent
system-level outcome that provides the required control.

The essence of stigmergy is the coordination of bounded agents embedded in a
(potentially unbounded) environment, whose state they both sense (to guide their

* Copyright © Her Majesty the Queen in Right of Canada as Represented by the Minister of

National Defence (2005). This copyrighted work has been created for Defence Research and
Development Canada, an agency within the Canadian Department of National Defence.

164 H. Van Dyke Parunak

Agent
State

Agent
Dynamics

Environment’s
State

Environment’s
Dynamics

Agent
State

Agent
Dynamics

Environment’s
State

Environment’s
Dynamics

Fig. 1. Basic Architecture of Stigmergy

actions) and modify (as a result of their actions). Section 2 introduces the concept of
stigmergy and describes its varieties and characteristics. Section 3 classifies a range of
human stigmergic mechanisms, both pre-computational and computational. Section 4
describes ongoing areas of research that will foster applications of human-human
stigmergy. Reflecting the interests of the client for whom this report was originally
prepared, we focus on military applications.

2 An Introduction to Stigmergy

The French entomologist Grassé coined the term “stigmergy” in the 1950’s [32] to
describe a broad class of multi-agent coordination mechanisms that rely on informa-
tion exchange through a shared environment. The term is formed from the Greek
words stigma “sign” and ergon “action,” and captures the notion that an agent’s ac-
tions leave signs in the environment, signs that it and other agents sense and that de-
termine their subsequent actions.

In spite of Grassé’s preoccupation with insects, stigmergy is ubiquitous in the hu-
man interactions. Our experience with a wide range of distributed systems suggests
that it is the only way for members of a large distributed population, whatever their
individual cognitive capabilities, to coordinate themselves with bounded computa-
tional resources. To set the context for our survey of stigmergy among humans, we
outline the basic architecture of stigmergy, then develop a taxonomy of stigmergic
interactions that can be used to classify specific instances. We discuss further details
on how stigmergic systems can be engineered in [72].

2.1 Architecture of Stigmergy

Fig. 1 summarizes the basic components of a stigmergic system: a population of
agents and an environment in which they are immersed.

Each agent has

• an internal state, which generally is not
directly visible to other agents;

• sensors that give it access to some of
the environment’s state variables;

• actuators that enable it to change some
of the environment’s state variables;

• a program (its “dynamics”) that maps
from its current internal state and its
sensor readings to changes in its state
and commands given to its sensors
and actuators.

The environment has
• a state, certain aspects of which generally are visible to the agents;
• a program (its “dynamics”) that governs the evolution of its state over time.

 A Survey of Environments and Mechanisms for Human-Human Stigmergy 165

Table 1. Varieties of Stigmergy

 Marker-Based Sematectonic

Quantitative
Gradient follow-
ing in a single
pheromone field

Ant cemetery
clustering

Qualitative
Decisions based
on combinations
of pheromones

Wasp nest
construction

The most important distinction between agents and the environment is that the in-
ternal state of agents is hidden, while the state of the environment is accessible to an
agent with appropriate sensors. In most cases, a second distinction can be observed.
Each agent is monolithic, a self-contained computational object with a well-defined
boundary. Typically, the environment is not monolithic, but is structured according to
some topology. Some examples of environmental topologies include

• a Cartesian space (e.g., the surface of the earth);
• a graph structure (e.g., a telecommunications network or social organization);
• a list of disjoint categories (e.g., a list of topics, though these are usually organized

into a graph by imposing an ontology).

When the environment is structured in this way, each agent is localized in the envi-
ronment. That is, its sensors and actuators are confined to one region of the environ-
ment. If the agent is mobile, it can change location in the environment, but at any
moment it is at one location. This localization of agents within the environment re-
stricts the computational load imposed on the agents, and enables stigmergic systems
to scale without exceeding the load on each agent.

While localization in a distributed environment keeps the computational load on
each agent manageable, it does not ensure that a reasonable system-level behavior
will emerge from the interactions of the agents. Critical support for this objective lies
in the interaction of the dynamics of the agents with those of the environment. The
dynamics of individual agents are typically nonlinear, and their interactions are often
nonlinear as well, resulting in a system that is susceptible to formal chaos. Far from
being a disadvantage, such dynamics actually enable self-organization, since they
permit the system to explore its state space efficiently. This exploration is a key in-
gredient of self-organization, other components of which are discussed in [72].

2.2 Varieties of Stigmergic Interaction

We distinguish four varieties of stigmergy, generated by two binary distinctions. One
distinction is whether the signs consist of special markers that agents deposit in the
environment (“marker-based stigmergy”) or whether agents base their actions on the
current state of the solution (“sematectonic stigmergy”) [9]. The other distinction is
whether the signals are a single scalar analogous to a potential field (“quantitative
stigmergy”) or whether they form a set of discrete options (“qualitative stigmergy”)
[12]. The two distinctions are orthogonal (Table 1).

The paradigm for marker based stigmergy is the use of pheromones by certain so-
cial insects. Some species
use multiple pheromone
“flavors” [25] and thus use
qualitative as well as quan-
quantitative decision-
making. In engineered
systems, stigmergic mark-
ers can consist of actual
physical chemicals
deposited in a

166 H. Van Dyke Parunak

Environment:
• Topology:
• State:
• Dynamics:

Agents:
• Sensor:
• Actuator:
• Dynamics:

Emergent system behavior:

Fig. 2. Template for Analysis of Examples

physical landscape, labeled scalar variables stored in a data structure whose topology
reflects that of the problem (as in much of our UAV control work), or price signals in
a marketplace [17]. The latter metaphor is particularly important in coordinating hu-
man interactions, as in our RAPPID system for collaborative design [75-77].

The structure of the domain itself provides sufficient signals for coordinating some
insect behaviors, without the need for special markers. Ants cluster corpses in their
cemeteries, guided only the density of corpse distribution [7]. This is a quantitative
decision, depending only on the distribution of a single type of object. Wasps decide
where to add the next cell to their nests based on which of several templates best
characterizes the current local shape of the nest, thus making a qualitative distinction.
Sematectonic stigmergy is also illustrated by an algorithm that explains how wolves
surround their prey [44], by being attracted to the prey while repelled by neighboring
wolves. We have applied sematectonic stigmergy to coordination of multiple sensors
[69, 73] and the assembly of intelligence information [95].

A subset of stigmergic mechanisms, “coordination fields” or “co-fields” [47, 52,
53, 96], consists of quantitative stigmergy. The scalar field is generated by a combina-
tion of attracting and repelling components, and the agents follow gradients in this
field, thus tending to avoid repellers and approach attractors. Such techniques have an
extended history in controlling individual robots [81].

Whatever the details of the interaction, examples from natural systems show that
stigmergic systems can generate robust, complex, intelligent behavior at the system
level even when the individual agents are simple and individually non-intelligent. In
these systems, intelligence resides not in a single distinguished agent (as in the cen-
tralized model) nor in each individual agent (the intelligent agent model), but in the
interactions among the agents and the shared dynamical environment.

3 Present Status of Technology

We summarize instances of stigmergic
human coordination in two broad
categories: those that do not rely on
digital computers (though they may be
enhanced by them), and those that are
distinctively creatures of the computer
age. For each category, we document
an example, and analyze it in terms of
the theoretical categories developed in
the previous section, using the
template shown in Fig. 2. We first
identify the environment, describe its
topology, the state variables that it
supports, and any internal dynamics. Then we identify the agents, discuss how they
sense and modify the environment (with attention to the main distinction between
sema(tectonic) and marker(-based) stigmergic interaction), and summarize their inter-
nal dynamics. Finally, we describe the overall emergent system behavior that the
stigmergy achieves.

 A Survey of Environments and Mechanisms for Human-Human Stigmergy 167

Environment: Vegetated terrain
• Topology: 2D manifold
• State:
o Degree of ground cover
o Obstacles

• Dynamics:
o Trodden vegetation dies
o Vegetation regrows on untrodden

areas
Agents: People (pedestrians or in vehi-
cles)
• Sensor:
o Sema: smoothness to path
o Sema: direction to destination
o Marker: road signs

• Actuator:
o Sema: direction of next step
o Marker: pave the path
o Marker: set road signs

• Dynamics: optimize smoothness and
direction

Emergent system behavior: globally
marked paths

Fig. 3. Trail Formation

3.1 Pre-computational

Humans have long coordinated their
activities through non-computational
environments, though these
mechanisms can often be enhanced
with computers.

3.1.1 Movement Coordination
Humans have always needed to move
in their environment, and have drawn
on stigmergic mechanisms both to
form their trails and to choose among
alternate existing trails.

3.1.1.1 Trail Formation The simplest
and most primitive trail formation
mechanisms rely on sematectonic
stigmergy. Humans wear down
vegetation on frequently-used routes,
and grass regrows if an old path is not
used (Fig. 3). There is an extensive
literature on mathematical models for
such path formation by “active
walkers” [37].

While trails can form entirely with
sematectonic stigmergy, humans tend
to enhance them with markers. My college campus was notorious for laying pavement
along bare tracks through the grass, turning emergent trails into permanent ones. A
common modern example is traffic signs, often maintained locally by a variety of
jurisdictions, but Native Americans also used artificial markers, including unnaturally
bent trees [23] and petroglyphs [54], to mark trails. While such mechanisms can make
trails easier to follow, they also render them less dynamic. It takes longer for a con-
crete path to crumble than for grass to regrow over an unused dirt path.

3.1.1.2 Traffic Flow Humans not only generate trails stigmergically, but also allocate
their movement across alternative routes, both sematectonically and using markers
(tolls) (Fig. 4). Note that this behavior builds on the product of a previous stigmergic
activity (the formation of the trails themselves).

3.1.2 Market Systems
Adam Smith’s “invisible hand” is an example of the self-organizing potential of a
stigmergic system, and have the benefit of an immense body of formal study [92].

There are two varieties of open markets. Both are stigmergic, though at different
levels.

168 H. Van Dyke Parunak

In an auction-based market (such as
a stock market or commodities ex-
change), the marketplace is the envi-
ronment in which buyers and sellers
interact, using currency as markers
(Fig. 5). The markets for individual
products are distinct, so the topology
of the environment is strictly speaking
a set of disjoint categories. However,
different products are linked by other
processes in the economy (for exam-
ple, the markets for steel and automo-
biles), leading to an implicit graph
structure.

A less-studied alternative to auction
systems is the pattern of Edgeworth
barter, in which buyers and sellers
interact directly with each other in
repeated pairwise transactions, with-
out the benefit of an auctioneer [3]
(Fig. 6). In this system, the environ-
ment consists entirely of the graph of
dependencies among different prod-
ucts induced by patterns of joint use,
since it is through these dependencies
that individual transactions have an
effect on one another.

3.1.3 Elections
An election can be viewed as a market
with candidates and issues as com-
modities and votes as currency. In a
single-issue or single-office election,
the dynamics are simple. However,
many elections involve a series of
issues or offices, often linked through
political platforms. The ultimate out-
come in terms of governance depends
on the policies advocated by a candi-
date. A voter may favor some of those
policies and oppose others, but rarely
has the opportunity of voting for or
against individual policies. Voting for
a candidate can be compared to buying
a complex product with multiple attributes. For example, in an automobile, one may
want high fuel economy, good off-road performance, and low maintenance, but usu-
ally must make compromises.

Environment: Product-specific ex-
changes
• Topology: Categories (though often

linked by product dependencies, e.g.,
steel in autos)

• State: Current bid and ask prices
• Dynamics: integrate offers to compute

prices that clear the market
Agents: Buyers and sellers
• Sensor (Marker): Current prices
• Actuator (Marker): State own bid or

ask price
• Dynamics: Maximize time integral of

revenue over expense
Emergent system behavior: globally
optimum allocation of resources

Fig. 5. Auction Market Systems

Environment: Trail network
• Topology: Graph
• State:
o Congestion
o Toll fees

• Dynamics: Convey traffic across
edges of the graph

Agents: People (pedestrians or in vehi-
cles)
• Sensor:
o Sema: current congestion on edge
o Sema: direction to destination
o Marker: requested toll

• Actuator:
o Sema: choice of edges at each node
o Marker: pay toll

• Dynamics: optimize speed and econ-
omy

Emergent system behavior: more
balanced load on different paths

Fig. 4. Traffic Flow

 A Survey of Environments and Mechanisms for Human-Human Stigmergy 169

If an election is like a market, rep-
resentative government is like an
economy. Elected officials themselves
participate in numerous legislative
actions, including both explicit votes
and implicit agreements, to pursue
their platforms. Voters often choose a
set of representatives in anticipation
of the subsequent legislative give-and-
take, providing for a balance of power
in the overall structure.

Viewed in this way, the topogra-
phy within which elections take
place is a graph with different colors
of nodes and edges. Some nodes
represent candidates, others represent
policies, and still others represent
representative divisions (such as
geographical regions). Edges link candidates to their regions and the issues they sup-
port or oppose. Votes for candidates propagate to the issues associated with them
(Fig. 7).

3.1.4 Document Editing
Joint authorship has always been a
stigmergic activity, mediated by the
emerging document itself. Each author
is stimulated by what previous authors
have written to add main-line content
or marginal comments. The dynamics
of this process have been greatly en-
hanced by sophisticated word process-
ing software that includes specific
facilities for review, comment, and
tracking multiple
authors.

While a document may seem to
be a static entity, internal semantic
relations can change as a result of
individual modifications. As a trivial
example, consider a document on a
sensitive issue. A later reviser adds
a tendentious definition to the first
page of the document. The structural integrity of the document has the effect of
propagating the semantics of this definition to later sections, potentially changing
their meaning (Fig. 8).

Environment: Network of districts,
candidates, and issues
• Topology: Graph
• State: Connectivity of links
• Dynamics: Population of districts;

support for candidates and issues
Agents: Voters
• Sensor (Sema): Affiliation of candi-

dates with issues
• Actuator (Marker): Vote
• Dynamics: Choose policies indirectly

through candidates
Emergent system behavior: Set of
policies aligned with voter interests

Fig. 7. Elections

Environment: Pairwise encounters
• Topology: Spatial distribution of trad-

ers
• State: Current locations of traders
• Dynamics: Support mixing of traders
Agents: Traders
• Sensor (Marker): Bid and ask price for

single entity
• Actuator (Marker): State own ask or

bid price
• Dynamics: Integrate information over

successive exchanges
Emergent system behavior: In repeated
trades, balances supply and demand

Fig. 6. Edgeworth Barter Markets

170 H. Van Dyke Parunak

An extension of document editing
is the development of knowledge in a
scientific community. Each paper that
is published contributes knowledge
that other researchers can use in stimu-
lating their ideas, modifying their
research directions, and deriving their
results (not to mention the more mun-
dane results of achieving tenure for the
authors and thus prolonging their
ability to contribute to the field) [57].

3.1.5 Status Boards
Many social settings use a publicly
visible display to coordinate activity
(Fig. 9). Examples include “in-out”
boards indicating which staff are cur-
rently in the office, situation boards
used in military battle management,
and a wide range of bulletin boards
advertising items for sale, employment
opportunities, services offered, etc.
The emergent behavior mediated by the board depends on its theme. “For sale”
boards generate market encounters, usually of the Edgeworth variety. Situation boards
enable tactical coordination of military forces. “In-out” boards enable more effective
direction of inquiries and assignments to staff who are immediately available.

3.1.6 Viral Marketing
Viral marketing describes “any strategy that encourages individuals to pass on a mar-
keting message to others” [103]. Before the advent of computers, this form of com-
munication was known as “word-of-
mouth,” and in non-commercial venues
was known as “rumors.” The speed of
digital communication has made it
particularly powerful. One classic
example is free email such as Hotmail:
every message sent by a user includes
a system-generated tagline that encour-
ages recipients to get their own Hot-
mail account, thus opening themselves
to follow-on advertisements. Another,
less blatant example is the use of
planted participants in chat rooms to
generate “buzz” in favor of a new
music album, film, or book.

The heart of these strategies is the
propagation of a message along the

Environment: A document
• Topology: Linear or (if structured)

hierarchical
• State: Current content, both mainline

and marginal comments
• Dynamics: Internal semantic propaga-

tion
Agents: Writers and editors
• Sensor (Sema): Current state of the

document
• Actuator:
o Sema: New content
o Marker: Strike-outs, highlighting

• Dynamics: Adjust content to modulate
ambiguity, tune an argument, or advo-
cate a particular position

Emergent system behavior: Expression
of jointly held consciousness

Fig. 8. Document Editing

Environment: Modifiable public dis-
play
• Topology: 2-dimensional surface
• State: Current contents
• Dynamics: Most current material

obscures or replaces older material
Agents: People visiting the board
• Sensor (Sema): Contents of the board
• Actuator (Sema): New postings
• Dynamics: Add new postings, re-

move or regroup old ones
Emergent system behavior: Depends
on theme of the board (see text)

Fig. 9. Status Board

 A Survey of Environments and Mechanisms for Human-Human Stigmergy 171

social network of participants
(Fig. 10), analogous to the propaga-
tion of a disease (thus the name). Like
disease propagation, viral marketing
depends on several factors [78], in-
cluding

• the susceptibility of the members of
the network to the message (if the
message is intrinsically uninter-
esting, it will die out);

• the connectivity of the infected
individuals (if the product of con-
nectivity times susceptibility falls
below 1, the infection will die
out);

• the structure of the social network (an infection will die out in a lattice if the per-
centage of infected individuals falls below a certain threshold, but can persist in a
power-law network no matter how small the percentage of infected individuals).

3.2 Computational

The advent of information technology has extended the applicability of stigmergic
mechanisms for human coordination, by augmenting human abilities for sensing,
communication, and information processing. Each of the examples in this section can
be viewed as a descendant of one or more of the pre-computational examples dis-
cussed in the previous section.

3.2.1 Intelligent Transportation
Systems

The application of computer technol-
ogy to human movement coordination
(Section 3.1.1) has produced the
burgeoning field of “Intelligent
Transportation Systems” (ITS, also
known as “Intelligent Highway Sys-
tems,” IHS), with extensive govern-
ment attention [22, 87], independent
business groups [42, 43], and dedi-
cated research societies and journals
[40].

The field as a whole includes all
modes of transportation. Our analysis
(Fig. 11) focuses on highway
systems.

Computational mechanisms in
this domain rely on the existence
of road networks that in most

Environment: Social network
• Topology: Graph
• State: Connectivity of participants
• Dynamics: Communication
Agents: Members of network
• Sensor (Sema): Content heard from

others
• Actuator (Sema): Repeating content
• Dynamics: Spread of message
Emergent system behavior: Number
of individuals who have heard the mes-
sage increases rapidly.

Fig. 10. Viral Marketing

Environment: Highway network
• Topology: Graph
• State:
o Locations and velocities of vehicles
o Timing of control signals

• Dynamics: Enable movement of vehi-
cles from one place to another

Agents: Vehicles
• Sensor:
o Marker: Signals
o Sema: Local congestion

• Actuator (Sema): Route choices
• Dynamics: Obey signals; minimize

local congestion; make progress to-
ward destination

Emergent system behavior: Increased
throughput, reduced collisions

Fig. 11. Intelligent Highway System

172 H. Van Dyke Parunak

cases were established using pre-digital stigmergy. Computational enhancements
include

• roadbed sensors for real-time estimates of traffic density and velocity;
• improved signal systems (including not only traffic lights but also digital signs) for

providing feedback to motorists;
• advanced algorithms [45, 104] for controlling signals on the basis of sensed traffic.

3.2.2 Collaboration Environments
Recognition of the potential of stigmergy for promoting coordination in human or-
ganizations [19] has led to a proliferation of systems that support human collaboration
in one way or another. These fall under two broad headings: content (technologies
that enable a community to assemble knowledge structures that exceed their individ-
ual expertise) and process (technologies that enable members of a community to act in
coordination with one another). In many ways, these systems can be viewed as a digi-
tal extension of the “Status Boards” discussed in Section 3.1.5 above.

Content-oriented collaboration environments can be viewed as digital libraries (a
domain with an extensive research literature [21], organizational infrastructure
[20, 41], and public-sector support [15, 60]). Their function is to store, index, and
provide access to shared materials. Because of the ease with which digital materials
can be authored and distributed, these environments can be modified by the same
communities to which they provide information, thus closing the stigmergic feedback
loop. The computer adds three successive layers of functionality to the traditional
library, discussed in the following
three sections:

1. Enhanced storage and interlinking
of materials, increasingly by the
user community

2. Automatic ranking of materials,
based on utilization by others

3. Dynamic distribution and sharing
of content.

3.2.2.1 Content Storage and Linking
Most computer users today are fre-
quent users of the World-Wide Web
(WWW), a worldwide network of
interlinked documents to which any-
one can add. The notion of such a
web of information was initially pro-
posed by Vannevar Bush in 1945
[11]. There were numerous attempts
at implementation, but the approach
that finally took hold was that devel-
oped by Berners-Lee [5], based on a common linking protocol (http) embedded in
simple text files.

Environment: Networked Computers
• Topology: Categories (but linked

through cross references)
• State: Current collection of articles
• Dynamics:
o Web link: Addressing
o Search engine: Indexing, Ranking,

Summarizing
Agents: People
• Sensor:
o Sema: Entries
o Marker: Linking Scores (Google)

• Actuator (Sema): Post a document
• Dynamics: Find desired information
Emergent system behavior: Maintain
rationalized system of interrelated in-
formation

Fig. 12. World-Wide Web

 A Survey of Environments and Mechanisms for Human-Human Stigmergy 173

The strength of the WWW is its open character, enabling it to grow rapidly. As
sites link to one another, the web becomes a framework for self-organizing communi-
ties [94] (Fig. 12). In fact, one of the first references to appear in response to a Google
search on “stigmergy” (as of the date of writing) is a discussion of the collaborate
effect of web logs, or blogs [33]. In the military domain, the US Army has made ef-
fective use of the emergent character of the WWW to share knowledge and experi-
ence among soldiers [88].

For some commercial purposes private file storage and sharing mechanisms are
preferred (and often built on top of the WWW). One widely marketed example is
Groove [34], which provides a common file repository and a variety of tools for pro-
ject management to support distributed project teams.

Originally, the only way to modify the WWW was to add a new document that
contained links to documents already there. A given document could only be changed
by its author. Recent technical developments (most prominently, Wiki [49]) enable
the maintenance of web pages that can be edited by anyone with the appropriate ac-
cess. A prominent example of the potential of this approach is the WikiPedia [101],
an encyclopedia of over half a million articles (many of very high quality), main-
tained entirely by the users. (By way of comparison, the Encyclopaedia Britannica
contains about 120,000 articles.) The Wiki technology is an example of tools for so-
cial bookmarking [36], by which people can share not only their documents but also
their annotations on the documents of others. This dynamic extends to entire libraries
the dynamics of shared document editing discussed in Section 3.1.4.

3.2.2.2 Site Ranking In a shared information system such as the WWW or a Wiki,
computers store the content, make it available to users, and facilitate changes and
additions, but in the original form of such systems the interpretation of the resulting
network is based on the human user’s perception. Computers can augment this per-
ception, to provide the user with a
richer view of the network than would
otherwise be possible. For example,
the same openness to growth that
makes the WWW so powerful can also
make it overwhelming. A keyword
search can return thousands of docu-
ments (“stigmergy,” in spite of its
rarity, returns 16,500 under Google at
the time of writing), far more than a
human user can effectively use. A
common example of this enhancement
is the ranking of web sites.

For example, much of the benefit of
the Google indexing system lies in its
PageRankTM algorithm [8, 31, 61]
(Fig. 13), which assigns each web
page a rank based on how many pages
point to it, weighted by the ranks of
those pages and the number of pages

Environment: Network of hyperlinked
documents
• Topology: Graph
• State: Connectivity of the graph
• Dynamics: Maintenance of indices

(via web spiders)
Agents: Creators of links in pages
• Sensor (Sema): Content of other rele-

vant pages
• Actuator (Marker): Insert links to

relevant pages
• Dynamics: Seeks to maximize connec-

tivity of own pages to relevant pages
Emergent system behavior: Pages are
assigned ranks that guide agents in find-
ing useful material.

Fig. 13. Google Page Rank

174 H. Van Dyke Parunak

to which they point. This recursive computation is far beyond the ability of a human
to calculate, but can readily be performed by computers, and enables users to find
valuable material far more easily than would otherwise be the case. A page’s rank
under this algorithm is a clear example of an emergent phenomenon generated stig-
mergically. It guides web page authors seeking material to reference in their own
pages, and in turn is modulated by the links that those authors insert to the material
they find. Authors who wish to promote their own pages often seek to subvert the
stigmergic nature of the system and control their page ranking. Much of Google’s
effort is devoted to blocking such subversion.

Another system for helping users find useful material is the PackHunter [79]. Users
deposit digital pheromones on a map of their web browsing activity, leading other
users with similar pheromone patterns to sites likely to be of interest to them. Where
PageRankTM focuses on the structure of the network as constructed by its authors,
PackHunter takes into account the actions of users. It can be viewed as a form of
collaborative filtering (Section 3.2.3) applied to web pages.

3.2.2.3 Peer-to-Peer Computing In the WWW, every document lives on some com-
puter, which must be active to make the content available. If a document is very popu-
lar, the computer’s individual bandwidth may be overwhelmed, making access slow
or impossible. The computer hosting the document is the “server,” and computers that
access it are “clients.”

An alternative strategy, peer-to-
peer (P2P) computing, seeks to do
away with the client-server distinction.
In this strategy, content moves dy-
namically from one computer to an-
other, and may exist in several places
at the same time. When a user seeks a
document, the network dynamically
retrieves it from the nearest available
machine. No single server has a mo-
nopoly on any document, and if one
source for a document is heavily
loaded, others can supply the demand.

Current implementations of P2P,
such as Gnutella [30], serve mainly as
ways to share content without the need
for a central file server, and are popu-
lar mechanisms for private users inter-
ested in sharing media. LOCKSS [50]
applies the P2P approach to preserving
digital media by distributing them
over multiple machines, and is ori-
ented to the library community. Bit-
Torrent [6] provides a general-purpose
peer-to-peer distribution system. In
principle, such a framework would be an excellent environment for “smart” informa-
tion that finds its way to users based on an emergent model of their interests, as in

Environment: Computer network
• Topology: Graph
• State: Semantic signature of users at

each computer
• Dynamics: Maintain semantic signa-

tures based on documents generated
and accessed

Agents: Users at nodes of the network
• Sensor (Sema): Review of accessed

documents
• Actuator:
o Sema: Documents and queries gen-

erated
o Marker: Rewards sent to relevant

documents
• Dynamics: User interactively gener-

ates and reviews documents
Emergent system behavior: Docu-
ments find their way to nodes where
they are likely to be of most value

Fig. 14. PARTNER (Smart P2P Document
Distribution)

 A Survey of Environments and Mechanisms for Human-Human Stigmergy 175

Altarum’s PARTNER technology [64]
(Fig. 14) and in a research project
currently underway at the Université
de Tours in France [57].

The collaboration systems de-
scribed so far focus on making digital
content accessible to users. A further
level of collaborative support is repre-
sented by systems that help users
manage the processes of their work.
We briefly describe several examples,
beginning with the most mature.

3.2.2.4 BPM: ActionWorks There is
an established market in the commer-
cial world for workflow or business
process management (BPM) systems.
These systems help organizations
define and follow standard processes
to ensure uniformity of performance.
A premier example is the Action-
Works system [2] from Action Tech-
nologies [1] (Fig. 15). This system
analyzes all workflows as built on a
basic four-step cycle involving a Cus-
tomer for whom work is being done
and a Performer who does the work.

1. The Customer prepares a plan of
the work to be done and issues a
request.

2. The Customer and Performer nego-
tiate the terms of the work.

3. The Performer performs the work
and reports completion.

4. The Customer evaluates the work
and either accepts it or identifies
what remains to be done.

Each of these steps can in turn be
broken down into further cycles until
the company’s entire business process
has been analyzed. The resulting
network forms an environment that
supports stigmergic interactions
among workers, who receive and give
local signals concerning the state of
their own responsibilities.

Environment: Model of interlocking
Prepare-Negotiate-Perform-Accept cy-
cles
• Topology: Graph
• State: Identify of Customer and Per-

former for each cycle, and current
state of the cycle

• Dynamics: Propagate information
about the state of each cycle to its sub-
and super-cycles

Agents: Workers
• Sensor (Marker): State of current

cycle and component subcycles
• Actuator (Marker): Report state of

current work package
• Dynamics: Seek to move along cycles

in which one is either a Customer or a
Performer

Emergent system behavior: Coordi-
nated execution of an overall workflow
without missing or duplicative action.

Fig. 15. ActionWorks BPM Framework

Environment: Web site
• Topology: Graph
• State: Information about products

offered, seller identity, reputation, and
conditions, buyer identity, reputation,
and bid, state of the overall auction
process

• Dynamics: Maintains and publishes
current state of the auction; determines
the winner; notifies participants.

Agents: Buyers and sellers
• Sensor (Marker): Current prices
• Actuator (Marker): State own bid or

ask price
• Dynamics: Maximize time integral of

revenue over expense
Emergent system behavior: globally
optimum allocation of resources

Fig. 16. On-Line Auctions

176 H. Van Dyke Parunak

3.2.2.5 On-Line Auctions On-line auctions such as eBay [24] provide a standardized
process that guides sellers and buyers in finding one another, engaging in bidding, and
concluding deals. The process being automated is essentially a Walrasian auction
(Section 3.1.2). The overall system includes WWW structures for organizing products
offered for sale and bids offered, a reputation system for enforcing honesty in transac-
tions, and time-based mechanisms for managing the flow of an actual auction (Fig.
16). Similar mechanisms are provided by Amazon in support of the network of used
book sellers that advertise through its website, or the Yahoo merchants network.

3.2.2.6 Market-Based Design:
RAPPID Altarum’s RAPPID technol-
ogy for distributed electromechanical
design [75-77] (Fig. 17) helps design-
ers reach agreement on design specifi-
cations at the intersections. RAPPID
is based on a generalization of Walra-
sian market model for coordination
(Section 3.1.2). A market exists for
each interface parameter (for example,
the torque or RPM of a shaft connect-
ing a motor and a transmission), and
the goods being traded are the as-
signments to those parameters. The
prices manipulated in the markets are
either catalog costs for actual compo-
nents or “play money” that designers
are allocated by the customer and
must spend to get the functionality
they require from other designers.

3.2.2.7 Battle Plan Adjustment: Coordinators A current DARPA program, Coordi-
nators [93], focuses on the task of helping fielded military units adapt their mission
plans as the situation around them changes. Each unit has a networked computer or
personal digital assistant (PDA). Agents representing each unit and running on their
computer negotiate with one another to determine the interactions among tasks, the
impact of the unfolding battle, and possible adaptive changes such as task timings,
task assignments, or adoption of pre-planned contingencies.

One analyst has briefly described guerilla operations from a stigmergic perspective
[82].

3.2.3 Recommender Systems
A “recommender system” or “recommendation system” attempts to predict items
(such as books, movies, or music) that a user may find interesting, based on the user’s
profile. Such systems are usually implemented using collaborative filtering [38]. The
system (the stigmergic environment) collects a large number of profiles on different
users. Each profile is a vector over the universe of items for which recommendations
are being made, and the magnitude of each element in a user’s profile indicates the
attractiveness of that item for that user. To make a recommendation, the system first

Environment: Set of markets on inter-
faces
• Topology: Graph reflecting product

structure
• State: Current bid and ask prices
• Dynamics: Compute prices that clear

the markets
Agents: Designers
• Sensor (marker): Current prices
• Actuator (marker): State bid or ask
• Dynamics: Maximize time integral of

revenue over expense
Emergent system behavior: Balanced
assignments to interacting design vari-
ables

Fig. 17. RAPPID

 A Survey of Environments and Mechanisms for Human-Human Stigmergy 177

finds other users whose profiles are
similar to that of the user for whom
the recommendation is intended (the
recommendee). Then it identifies
elements in their profiles with high
scores, elements for which the re-
commendee has registered no score.

The big challenge for recommender
systems is collecting and maintaining
a collection of user profiles. Users
typically find it onerous to rank their
preferences explicitly. However, their
preferences can often be deduced from
other actions they take. Perhaps the
best known recommender system is
that used by Amazon to recommend
books to its buyers (Fig. 19). This
system functions stigmergically. Every
purchase of an item is taken as evi-
dence that the purchaser has a high
level of interest in that item, and is
registered in that user’s profile. Thus
individual actions (purchases) leave
signs in the environment (the collec-
tion of profiles) that are integrated to
provide feedback to the individual
(what book might be a reasonable next
acquisition).

3.2.4 Scheduling and Planning
Many problems of operational impor-
tance can be cast as scheduling and
planning problems. Abstractly, these
problems concern the allocation of
scarce resources to a set of tasks over
time. Much of the research in Opera-
tions Research is devoted to formal
algorithms for solving such problems,
with special emphasis on guaranteeing
the optimality of the solution.

A large body of centralized algo-
rithms has been developed for solving
these problems. However, many ver-
sions of the problem are NP-complete
[27], meaning that for an instance of
reasonable size, the time required to
compute the solution is too long to complete by the time the plan is needed. To ad-
dress these problems, a number of agent-oriented solutions have been proposed.

Environment: Collection of user pro-
files
• Topology: Colored graph (user and

item nodes with links indicating pref-
erences between users and items, and
similarities between users)

• State: Degree of preference of each
user for each item; degree of similarity
among users

• Dynamics: Maintain preference and
similarity scores

Agents: Purchasers
• Sensor (Sema): Description of rec-

ommended purchase
• Actuator (Sema): Purchase an item
• Dynamics: Spend money on items

most likely to be of interest
Emergent system behavior: Identify
items most likely to be of interest to the
user

Fig. 19. Recommender System (Amazon)

Environment: Communication network
• Topology: Graph
• State: Current state of the plan; repre-

sentation of extraneous events
• Dynamics: Negotiation of plan ad-

justments among agents
Agents: Warfighters
• Sensor (Sema): Learn of constraints

from other warfighters, and recom-
mendations from the agents

• Actuator (Sema): Represent state of
the battle and current constraints in to
the system

• Dynamics: Report constraints and
preferences

Emergent system behavior: Adjusted
battle plan that balances requirements of
the entire team

Fig. 18. DARPA Coordinators

178 H. Van Dyke Parunak

While these methods vary considera-
bly in their details, they tend to share
two features. First, they do not guar-
antee optimal solutions, but use heu-
ristics to obtain “good-enough” solu-
tions in reasonable time. Second, a
common heuristic is for the agents to
restrict their interactions to other
agents that are near them in some
problem-specific topology. Thus these
systems often qualify as stigmergic
(Fig. 20), and frequently draw on
recognized stigmergic mechanisms,
such as market or pheromone systems.
We can illustrate these systems with
two examples from the domain of
manufacturing planning and schedul-
ing.

AARIA [66, 67] is based on the
model of the factory as a marketplace
[4, 62]. The participants in the market
are the workstations in the factory that
can change the state of material, and
agents representing each job that moves
through the factory. A job agent negoti-
ates with workstations to perform the operations that it requires in the appropriate se-
quence, using market mechanisms as already discussed in Section 3.1.2.

An important innovation in AARIA is the use of a loading profile or “dance card”
on each workstation agent [16]. This profile aggregates the expected load on the
workstation over time. Job agents search this profile to find relatively unoccupied
times when they can be executed, and augment it when they book a reservation on a
workstation. Thus the profile behaves like a pheromone over time, leveling the load
that each workstation experiences.

The pheromone approach is taken even further in the system described in [9]. Each
job sends out a swarm of ghost agents that explore alternative possible routings and
record their findings in the form of digital pheromones in a graph representing the
factory’s conveyance system. The actual job then follows the emergent pheromone
trace. Another set of dynamics from insects, based on task allocation in wasps, has
also been exploited in support of manufacturing planning and scheduling [14].

Yet another leading effort in stigmergic scheduling and planning applied to manu-
facturing is the work of the PROSA group at the Katholieke Universiteit Leuven in
Belgium [91]. The acronym PROSA stands for “Product, Resource, Order, Staff Ar-
chitecture,” and identifies the main software agents (products, resources, and orders)
that interact stigmergically to guide the factory.

David Scheidt of Johns Hopkins University’s Advanced Physics Lab reports work
on using markets for shipboard power and fluids distribution at JHU/APL, Rockwell
Automation, Nutech, and Icosystems [85], but these systems are not documented in

Environment: Factory conveyance
structure
• Topology: Graph
• State: Connectivity between worksta-

tions; capabilities and load profile of
each workstation

• Dynamics: Maintain load profiles on
workstations

Agents: Workstations, Jobs
• Sensor (Marker): Market bids, phero-

mone levels
• Actuator (Market): Make bids; deposit

pheromones; (jobs) select next opera-
tion

• Dynamics: Maximize local perform-
ance (utilization for a workstation; de-
livery time for a job)

Emergent system behavior: Reduced
overall production time and increased
throughput

Fig. 20. Manufacturing Scheduling and
Planning

 A Survey of Environments and Mechanisms for Human-Human Stigmergy 179

the open literature. Work on market mechanisms for power distribution in residential
and industrial settings has been published [106, 107]

4 Future Developments

Further technical enablement of human-human stigmergy depends on developments
in several enabling technologies, including ubiquitous computing, theoretical founda-
tions, simulation, and privacy and security.

4.1 Computing Hardware

The environment is intrinsic to stigmergy. As computing technology grows smaller,
less costly, and lower in power requirements, it can be distributed more widely in the
physical environment, increasing the potential for stigmergic interactions.

Embedded sensors in the environment will enable passive tracking of the locations
of mobile entities. Roadway sensors that can detect vehicles by their ferrous signature
are already a critical component of intelligent transportation systems (Section 3.2.1).
RFID [100] provides a way to make less readily sensed objects (including humans)
visible, and can provide support for digital pheromones [51]. A new generation of
microsensors include limited computational and communications capability. The
University of Berkeley is a leading center in the development of this hardware [80].

Today, we think of human interactions with computers as deliberate and explicit,
relying on keyboards, display screens, and pointing devices. As sensors, processing,
and communications become more tightly integrated with the environment, computers
will become invisible [86], yielding “ubiquitous” or “pervasive” computing. Humans
will interact with computers via ordinary objects. (A current example is the modern
automobile. Most drivers are unaware of the half-dozen or so computers they are
manipulating as they drive down the road.) To enhance the transparency of this inter-
action, human interface devices will be critical. These include

• Heads-up displays to merge computer-generated information unobtrusively with
the user’s normal field of vision,

• RFID technologies to track a person’s location and physiological state without
explicit action on the part of the subject,

• Haptic technologies to guide the user through touch and feel.

An important area of research will be the development of power sources for perva-
sive computers. The smaller and more numerous computing elements become, the
less power each will require, but the more impractical conventional power sources
(such as batteries) become. In some cases (such as passive RFID), many passive sen-
sors can receive the power they need from a few active readers. More generally,
mechanisms such as parasitic power extraction from ambient RF or thermal noise will
be come critical to the operation of such systems.

4.2 Foundations

Engineering requirements for ubiquitous computing are radically different from those
that support the development, deployment, and maintenance of traditional computer
systems [110], and will rely on a new body of theory and software engineering prac-

180 H. Van Dyke Parunak

tices that can cope with the large numbers of processing elements, their physical dis-
tribution, the nonlinearity of their dynamics, and the nature of emergent behavior.
Leading centers for the development of such software engineering methods include
the Altarum Institute [63, 72] and the Università di Modena e Reggio Emilia in Italy
with its vision of spraying computers onto the physical environment [109].

An important basis for this new theory is likely to be statistical physics, a mature
quantitative science that is concerned with the emergence of macro-level system char-
acteristics (such as pressure and temperature) from the behaviors of micro-level ele-
ments (atoms and molecules). Some research has been done on transferring insights
from statistical physics to self-organizing systems [10, 48, 68, 71, 74, 84], but the
field merits much more systematic exploration.

Applying formal methods will require simplified models of the phenomena in
question. One important such model in the case of resource allocation is the minority
game [70, 83, 84]. Altarum has been a leader in developing this analogy. Another
class of models is derived from the new science of network structure [59], where
Mark Newman of the University of Michigan is a leader [58]. Understanding better
the dynamics of processes constrained to such networks is vital in understanding the
spread of stigmergic information, such as the effectiveness of viral marketing.

The recent institution of the Workshop on Environments for Multi-Agent Systems
(E4MAS [18, 99]) enables a necessary focus on the agent environment as a first-class
engineering object in constructing and maintaining such systems. Recognizing the
environment in this way not only facilitates system engineering, but is in fact essential
to avoid inconsistencies that otherwise hamper the design [55]. Researchers from
Leuven [97] (Danny Weyns), Reims [89] (Fabien Michel), and Ann Arbor [65] (Van
Parunak) are the organizers of this series of workshops.

4.3 Integrated System-Social Simulation

Because of their emergent character, stigmergic systems require extensive use of
simulation for their design and analysis.

Most simulation platforms used historically to study stigmergy in animals or ro-
botic systems focus on support for large populations of fairly simple agents and the
presence of an active environment. The leading simulation platforms in this area are
Swarm [46] from the Santa Fe Institute, RePast [90] from the University of Chicago,
and NetLogo [102] from Northwestern University.

There is a growing discipline of social simulation that takes account of the richness
of human behavior. The University of Surrey in the UK is one leading center [28, 29].
These systems typically do not support large populations or environmentally-
mediated interactions. Advances in human-human stigmergy will require simulation
tools that combine the features of these two classes of existing systems.

4.4 Security and Privacy

One of the strengths of stigmergy is that information deposited by one agent can be
retrieved and acted upon by other agents that visit the same location in the environ-
ment where the deposit was made. This openness of information poses a challenge to
security and privacy. Adversarial applications (such as commerce or warfare) require

 A Survey of Environments and Mechanisms for Human-Human Stigmergy 181

guarantees that adversaries will not be able to learn a system’s intentions by eaves-
dropping, or to disrupt its operation by inserting malicious information. More gener-
ally, western society rightly places a premium on the rights of the individual human to
protect personal information from broad dissemination.

In some respects, stigmergy is more secure than alternatives. Conventional systems
for command and control involve messages whose contents provide considerable
semantic detail about plans and objectives. Stigmergic messages, by way of contrast,
are often numeric (e.g., a digital pheromone deposit). Such messages make sense only
in the context of the entire system, making it much more difficult for an adversary
either to interpret an intercepted message or to craft a spurious one to achieve a de-
sired disruption. In addition, the stochasticity implicit in many stigmergic designs
means that the detailed behavior of the system is unpredictable even to the user, mak-
ing it even more obscure to an adversary without knowledge of its context.

Nevertheless, because stigmergic systems post information in the environment, re-
sponsible deployment will require new advances in security technology. Leading
research in security for highly distributed systems is being pursued at many institu-
tions, including IBM [13] and the University of New Mexico [26], and is published in
the IEEE Distributed Systems Online e-journal [39] and workshops such as the Inter-
national Workshop on Security in Distributed Computing Systems [35] and the Inter-
national Workshop on Security in Systems and Networks [105].

Acknowledgments

This review benefited greatly by responses to a survey mailed to internationally
known researchers in this field. We acknowledge the detailed responses provided by
the following colleagues: Nicholas Monmarché [56], David Payton, David Scheidt,
Paul Valckenaers, Danny Weyns [98], and Franco Zambonelli [108].

References

[1] Action. Action Technologies. 2005. http://www.actiontech.com/index.cfm.
[2] Action Technologies. Enabling Business Process Management. Action Technologies,

Inc., Oakland, CA, 2005. http://www.actiontech.com/library/documents/ Enabling-
BPM.pdf.

[3] R. Axtell and J. Epstein. Distributed Computation of Economic Equilibria via Bilateral
Exchange. Brookings Institution, Washington, DC, 1997.

[4] A. D. Baker. Manufacturing Control with a Market Driven Contract Net. Thesis at Rens-
selaer Polytechnic Institute, Department of Electrical Engineering, 1991.

[5] T. Berners-Lee. Weaving the Web: Origins and Future of the World Wide Web. Texere
Publishing, 1999.

[6] BitTorrent. The Official BitTorrent Home Page. Web site, 2005. http://www. bittor-
rent.com/index.html.

[7] E. Bonabeau, G. Theraulaz, V. Fourcassié, and J.-L. Deneubourg. The Phase-Ordering
Kinetics of Cemetery Organization in Ants. Physical Review E, 4:4568-4571, 1998.

[8] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine. Com-
puter Networks and ISDN Systems, 30(1-7):101-117, 1998.

182 H. Van Dyke Parunak

[9] S. Brueckner. Return from the Ant: Synthetic Ecosystems for Manufacturing Control.
Thesis at Humboldt University Berlin, Department of Computer Science, 2000.

[10] S. Brueckner and H. V. D. Parunak. Information-Driven Phase Changes in Multi-Agent
Coordination. In Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS
2003), pages 950-951, 2003.

[11] V. Bush. As We May Think. The Atlantic Monthly, vol. 176, pages 101-108, 1945.
http://www.theatlantic.com/doc/prem/194507/bush.

[12] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau.
Self-Organization in Biological Systems. Princeton, NJ, Princeton University Press,
2001.

[13] D. Chess. Massively Distributed Systems. Web site, 2001. http://www.research.ibm.
com/massive/.

[14] V. A. Cicirello and S. F. Smith. Wasp-like Agents for Distributed Factory Coordination.
Journal of Autonomous Agents and Multi-Agent Systems, 8(3 (May)):237-266, 2004.

[15] CIDL. Canadian Initiative on Digital Libraries / Initiative Canadienne sur les Bibliothè-
ques Numériques. Web site, 2004. http://www.collectionscanada.ca/cidl/.

[16] S. J. Clark and H. V. D. Parunak. Density-Based Emergent Scheduling System. USA Pa-
tent # 5,953,229, Environmental Research Institute of Michigan, 1999.

[17] S. H. Clearwater, Editor. Market-Based Control: A Paradigm for Distributed Resource
Allocation. Singapore, World Scientific, 1996.

[18] T. DeWolf. The Second International Workshop on Environments for Multiagent Sys-
tems. Web site, 2005. http://www.cs.kuleuven.ac.be/~distrinet/events/e4mas/.

[19] V. Dimitrov. Swarm-Like Dynamics and their Use in Organizations and Management.
2000. http://www.zulenet.com/VladimirDimitrov/pages/swarmanprint.html.

[20] DLF. Digital Library Federation. Web site, 2005. http://www.diglib.org/.
[21] DLib. D-Lib Magazine. Web site, 2005. http://www.dlib.org.
[22] DOT. ITS Joint Program Office Home. 2005. http://www.its.dot.gov.
[23] J. C. Dyer. Indian Trail Trees. 2004. http://home.att.net/~trailtrees/.
[24] eBay. eBay. Web site, 2005. http://www.ebay.com.
[25] A. M. El-Sayed. The Pherobase: Database of Insect Pheromones and Semiochemicals.

2005. http://www.pherobase.com.
[26] S. Forrest. Forrest Home page. Web site, 2005. http://www.cs.unm.edu/~forrest/.
[27] M. R. Garey and D. S. Johnson. Computers and Intractability. San Francisco, CA, W.H.

Freeman, 1979.
[28] N. Gilbert, Editor. Journal of Artificial Societies and Social Simulation. Surrey, UK,

University of Surrey, 1998-.
[29] N. Gilbert. Centre for Research on Simulation in the Social Sciences. Web Page, 2001.

http://www.soc.surrey.ac.uk/research/simsoc/cress.html.
[30] Gnutella. Gnutella.com. Web site, 2005. http://www.gnutella.com/.
[31] Google. Google Technology. Web site, 2004. http://www.google.com/technology/.
[32] P.-P. Grassé. La Reconstruction du nid et les Coordinations Inter-Individuelles chez Bel-

licositermes Natalensis et Cubitermes sp. La théorie de la Stigmergie: Essai d'interpréta-
tion du Comportement des Termites Constructeurs. Insectes Sociaux, 6:41-84, 1959.

[33] J. Gregorio. Stigmergy and the World-Wide Web. Blog page, 2002.
http://bitworking.org/news/Stigmergy.

[34] Groove Networks. Groove Virtual Office - Virtual office software for sharing files, pro-
jects and data. Web Site, 2005. http://www.groove.net/home/index.cfm.

[35] Y. Guan and W. Zhao. 2005 International Workshop on Security in Distributed Compu-
ting Systems (SDCS 2005). Web site, 2005. http://securityworkshop.ece.iastate.edu/.

[36] T. Hammond, T. Hannay, B. Lund, and J. Scott. Social Bookmarking Tools (I): A Gene-
ral Review. D-Lib Magazine, 11(4 (April)), 2005.

 A Survey of Environments and Mechanisms for Human-Human Stigmergy 183

[37] D. Helbing, F. Schweitzer, J. Keltsch, and P. Molnár. Active Walker Model for the For-
mation of Human and Animal Trail Systems. Institute of Theoretical Physics, Stuttgart,
Germany, 1998. http://xxx.lanl.gov/ps/cond-mat/9806097.

[38] F. Heylighen. Collaborative Filtering. Web page, 2001. http://pespmc1.vub.ac.be/
COLLFILT.html.

[39] IEEE. IEEE Distributed Systems Online--Security. Web site, 2005. http://dsonline.
computer.org/portal/site/dsonline/menuitem.9ed3d9924aeb0dcd82ccc6716bbe36ec/index.jsp?
&pName = dso_level1&path=dsonline/topics/security&file=index.xml&xsl=article.xsl&;jsess
ionid= CGj1WsF77cmpLrdrnLm7558Lpwt8blznMbx075JDjftDV5k57RGf!1502094820.

[40] IEEE. IEEE ITSS Transactions and Society. 2005. http://www.ewh.ieee. org/
tc/its/trans.html.

[41] IFLA. Digital Libraries: Resources and Projects. Web site, 2003. http://www.ifla.org/II/
diglib.htm.

[42] ITS-STI Canada. ITS - STI Canada - Intelligent Transportation Systems Society of Ca-
nada | Systèmes de Transportes Intelligents Société du Canada. 2005. http://www.itsca-
nada.ca/.

[43] ITS America. ITS America Home. 2005. http://www.itsa.org.
[44] R. E. Korf. A Simple Solution to Pursuit Games. In Proceedings of Eleventh Internatio-

nal Workshop on Distributed Artificial Intelligence, pages 183-194, 1992.
[45] T. J. Lambert, III, M. A. Epelman, and R. L. Smith. A Fictitious Play Approach to

Large-Scale Optimization. Operations Research, 53(3 (May-June)), 2005.
[46] C. Langton, R. Burkhart, and G. Ropella. The Swarm Simulation System. 1997.

http://www.swarm.org.
[47] L. Leonardi, M. Mamei, and F. Zambonelli. Co-Fields: Towards a Unifying Model for

Swarm Intelligence. DISMI-UNIMO-3-2002, University of Modena and Reggio Emilia,
Modena, Italy, 2002. http://polaris.ing.unimo.it/didattica/curriculum/marco/Web-Co-
Fields/stuff/Swarm.pdf.

[48] K. Lerman and A. Galstyan. A General Methodology for Mathematical Analysis of Mul-
ti-Agent Systems. ISI-TR-529, USC Information Sciences Institute, Marina del Rey, CA,
2001. http://www.isi.edu/%7Elerman/papers/isitr529.pdf.

[49] B. Leuf and W. Cunningham. Wiki: Welcome Visitors. Web site, 2002. http://wiki.org/.
[50] LOCKSS. LOCKSS Program Home. Web site, 2005. http://lockss.stanford.edu/.
[51] M. Mamei and F. Zambonelli. Spreading Pheromones in Everyday Environments via

RFID Technologies. In Proceedings of 2nd IEEE Symposium on Swarm Intelligence,
IEEE, 2005.

[52] M. Mamei, F. Zambonelli, and L. Leonardi. A Physically Grounded Approach to Coor-
dinate Movements in a Team. In Proceedings of First International Workshop on Mobile
Teamwork (at ICDCS), IEEE CS Press, 2002.

[53] M. Mamei, F. Zambonelli, and L. Leonardi. Distributed Motion Coordination with Co-
Fields: A Case Study in Urban Traffic Management. In Proceedings of 6th IEEE Sympo-
sium on Autonomous Decentralized Systems (ISADS 2003), IEEE CS Press, 2003.

[54] L. Martineau. The Rocks Begin to Speak. Las Vegas, NV, KC Publications, 1973.
[55] F. Michel. Formalisme, méthodologie et outils pour la modélisation et la simulation de

systèmes multi-agents. Thesis at Université des Sciences et Techniques du Languedoc,
Department of Informatique, 2004.

[56] N. Monmarché. HaNT Web Site: Nicholas Monmarché. Web site, 2005.
http://www.hant.li.univ-tours.fr/webhant/index.php?pageid=16.

[57] N. Monmarché. Personal Communication. 2005.
[58] M. Newman. Mark Newman. Web site, 2005. http://www-personal.umich.edu/~mejn/.
[59] M. E. J. Newman. The structure and function of complex networks. SIAM Review,

45:167-256, 2003.
[60] NSF. Digital Libraries Initiative Phase 2. Web site, 2003. http://www.dli2.nsf.gov/.

184 H. Van Dyke Parunak

[61] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking: Brin-
ging Order to the Web. Stanford Digital Library Technologies Project, Palo Alto, CA,
1998. http://citeseer.ist.psu.edu/page98pagerank.html.

[62] H. V. D. Parunak. Manufacturing Experience with the Contract Net. In M. N. Huhns,
Editor, Distributed Artificial Intelligence, pages 285-310. Pitman, London, 1987.

[63] H. V. D. Parunak. Making Swarming Happen. In Proceedings of Swarming and Net-
work-Enabled C4ISR, ASD C3I, 2003.

[64] H. V. D. Parunak. Challenging Old Assumptions in Global Information Management. In
Proceedings of ONR Conference on Collaborative Decision-Support Systems, CADRC,
California Polytechnic Institute, 2004.

[65] H. V. D. Parunak. Home page of H. Van Dyke Parunak. 2005. http://www. alta-
rum.net/~vparunak/.

[66] H. V. D. Parunak, A. D. Baker, and S. J. Clark. The AARIA Agent Architecture: From
Manufacturing Requirements to Agent-Based System Design. Integrated Computer-
Aided Engineering, 8(1):45-58, 2001.

[67] H. V. D. Parunak and L. Barto. Agent-based Models and Manufacturing Processes. In
Proceedings of Embracing Complexity: The 1999 Colloquium on the Application of
Complex Adaptive Systems to Business, pages 109-118, Ernst & Young Center for Busi-
ness Innovation, 1999.

[68] H. V. D. Parunak and S. Brueckner. Entropy and Self-Organization in Multi-Agent Sys-
tems. In Proceedings of The Fifth International Conference on Autonomous Agents
(Agents 2001), pages 124-130, ACM, 2001.

[69] H. V. D. Parunak and S. Brueckner. Swarming Coordination of Multiple UAV's for Col-
laborative Sensing. In Proceedings of Second AIAA "Unmanned Unlimited" Systems,
Technologies, and Operations Conference, AIAA, 2003.

[70] H. V. D. Parunak, S. Brueckner, J. Sauter, and R. Savit. Effort Profiles in Multi-Agent
Resource Allocation. In Proceedings of Autonomous Agents and Multi-Agent Systems
(AAMAS02), pages 248-255, 2002.

[71] H. V. D. Parunak, S. Brueckner, and R. Savit. Universality in Multi-Agent Systems. In
Proceedings of Third International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS 2004), pages 930-937, IEEE, 2004.

[72] H. V. D. Parunak and S. A. Brueckner. Engineering Swarming Systems. In F. Bergenti,
M.-P. Gleizes, and F. Zambonelli, Editors, Methodologies and Software Engineering for
Agent Systems, pages 341-376. Kluwer, 2004.

[73] H. V. D. Parunak, S. A. Brueckner, and J. Odell. Swarming Pattern Detection in Sensor
and Robot Networks. In Proceedings of 10th International Conference on Robotics and
Remote Systems for Hazardous Environments, American Nuclear Society (ANS), 2004.

[74] H. V. D. Parunak, S. A. Brueckner, J. A. Sauter, and R. Matthews. Global Convergence
of Local Agent Behaviors. In Proceedings of Fourth International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS05), pages 305-312, 2005.

[75] H. V. D. Parunak, A. C. Ward, M. Fleischer, and J. A. Sauter. The RAPPID Project:
Symbiosis between Industrial Requirements and MAS Research. Autonomous Agents
and Multi-Agent Systems, 2:2 (June):111-140, 1999.

[76] H. V. D. Parunak, A. C. Ward, and J. A. Sauter. A Systematic Market Approach to Dis-
tributed Constraint Problems. In Proceedings of International Conference on Multi-
Agent Systems (ICMAS'98), pages 455-456, American Association for Artificial Intelli-
gence, 1998.

[77] H. V. D. Parunak, A. C. Ward, and J. A. Sauter. The MarCon Algorithm: A Systematic
Market Approach to Distributed Constraint Problems. AI-EDAM: Artificial Intelligence
for Engineering Design, Analysis and Manufacturing, 13(3):217-234, 1999.

[78] R. Pastor-Satorras and A. Vespignani. Epidemic Spreading in Scale-Free Networks. Phy-
sical Review Letters, 86:3200-3203, 2001.

 A Survey of Environments and Mechanisms for Human-Human Stigmergy 185

[79] D. Payton, M. Daily, and K. Martin. Dynamic collaborator discovery in information in-
tensive environments. ACM Computing Surveys, 31(2 (June)), 1999.

[80] K. Pister. Smart Dust: Autonomous sensing and communication in a cubic millimeter.
Web Page, 2001. http://robotics.eecs.berkeley.edu/~pister/SmartDust/.

[81] E. Rimon and D. E. Kodischek. Exact Robot Navigation Using Artificial Potential Func-
tions. IEEE Transactions on Robotics and Automation, 8(5 (October)):501-518, 1992.

[82] J. Robb. Stigmergic Learning and Global Guerillas. Web page, 2004.
http://globalguerrillas.typepad.com/globalguerrillas/2004/07/stigmergic_syst.html.

[83] R. Savit, S. A. Brueckner, H. V. D. Parunak, and J. Sauter. Phase Structure of Resource
Allocation Games. Physics Letters A, 311:359-364, 2002.

[84] R. Savit, S. A. Brueckner, H. V. D. Parunak, and J. Sauter. General Structure of a Class
of Resource Allocation Games. Physica A, 345:676-704, 2005.

[85] D. Scheidt. Personal Communication. 2005.
[86] N. Streitz and P. Nixon. Special Issue on The Disappearing Computer. Communications

of the ACM, vol. 48, pages 32-71, 2005.
[87] Transport Canada. Intelligent Transportation Systems. 2005. http://www.its-sti.gc.ca/en/

menu.htm.
[88] U.S. Army. Army Knowledge Online. 2005. https://www.us.army. mil/suite/login/

welcome.html#.
[89] Université de Reims. CReSTIC: Centre de Recherche en Sciences et Technologies de

l'Information et de la Communication. 2005. http://crestic.univ-reims.fr/.
[90] University of Chicago. RePast: An Agent Based Modelling Toolkit for Java. Web Page,

2003. http://repast.sourceforge.net/.
[91] P. Valckenaers, H. V. Brussel, K. Hadeli, O. Bochmann, B. S. Germain, and C. Zamfi-

rescu. On the design of emergent systems: an investigation of integration and interopera-
bility issues. Engineering Applications of Artificial Intelligence, 16:377-393, 2003.

[92] H. Varian. Intermediate Microeconomics. Fifth ed. New York, NY, W. W. Norton, 1999.
[93] T. Wagner. Coordinators. Web site, 2004. http://www.darpa.mil/ipto/Programs/coordinators/

index.htm.
[94] F. Wang. Self-Organizing Communities Formed by Middle Agents. In Proceedings of

First International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 2002), pages 1333-1339, 2002.

[95] P. Weinstein, H. V. D. Parunak, P. Chiusano, and S. Brueckner. Agents Swarming in
Semantic Spaces to Corroborate Hypotheses. In Proceedings of AAMAS 2004, pages
1488-1489, 2004.

[96] F. Weiskopf and D. Scheidt. Cooperative Autonomous UAV Team. Presentation at
Swarming Entities – Joint C4ISR DSC Study Plan Conference, Johns Hopkins Universi-
ty Applied Physics Laboratory, Laurel, MD, 2002.

[97] D. Weyns. Homepage of Danny Weyns. Web page, 2005. http://www.cs.kuleuven.
ac.be/~danny/home.html.

[98] D. Weyns. Homepage of Danny Weyns. Web site, 2005. http://www.cs. kuleuven.
ac.be/~danny/home.html.

[99] D. Weyns, H. V. D. Parunak, F. Michel, T. Holvoet, and J. Ferber. Multiagent Systems,
State-of-the-Art and Research Challenges. In Proceedings of Workshop on Environments
for Multi-Agent Systems (E4MAS 2004), pages 1-47, Springer, 2004.

[100] Wikipedia. RFID. Web page, 2005. http://en.wikipedia.org/wiki/RFID.
[101] Wikipedia. Wikipedia, The Free Encyclopedia. Web site, 2005. http://en.wikipedia.

org/wiki/Main_Page.
[102] U. Wilensky. NetLogo. Web site, 1999. http://ccl.northwestern.edu/netlogo.
[103] R. F. Wilson. The Six Simple Principles of Viral Marketing. Web Marketing Today,

2000. http://www.wilsonweb.com/wmt5/viral-principles.htm.

186 H. Van Dyke Parunak

[104] K. Wunderlich, D. Kaufman, and R. L. Smith. Link Travel Time Prediction for Decen-
tralized Route Guidance Architectures. IEEE Transactions on Intelligent Transportation
Systems, 1(1 (March)):4-14, 2000.

[105] C.-Z. Xu and X. Zhou. The First International Workshop on Security in Systems and
Networks (SSN2005). Web site, 2005. http://www.cs.uccs.edu/~SNS/sns2005.html.

[106] F. Ygge and H. Akkermans. Power Load Management as a Computational Market. In
Proceedings of Second International Conference on Multi-Agent Systems (ICMAS-96),
pages 393-400, AAAI, 1996.

[107] F. Ygge and H. Akkermans. Decentralized Markets versus Central Control: A Compara-
tive Study. Journal of Artificial Intelligence Research, 11:301-333, 1999.

[108] F. Zambonelli. Home page for Franco Zambonelli. Web site, 2005.
http://www.dismi.unimo.it/Members/fzambonelli.

[109] F. Zambonelli, M. P. Gleizes, M. Mamei, and R. Tolksdorf. Spray Computers: Explora-
tions in Self-Organization. Journal of Pervasive and Mobile Computing, 1(1 (March)),
2005.

[110] F. Zambonelli and V. Parunak. Towards a Paradigm Change in Computer Science and
Software Engineering: a Synthesis. The Knowledge Engineering Review, (forthcoming),
2004.

Augmenting the Physical Environment Through
Embedded Wireless Technologies

Marco Mamei and Franco Zambonelli

Dipartimento di Scienze e Metodi dell’Ingegneria,
University of Modena and Reggio Emilia,
Via Allegri 13, 42100 Reggio Emilia, Italy

{mamei.marco, franco.zambonelli}@unimo.it

Abstract. Emerging pervasive computing technologies such as sensor
networks and RFID tags can be embedded in our everyday environment
to digitally store and elaborate a variety of information about the sur-
rounding. By having application agents access in a dynamic and wire-
less way such distributed information, it is possible to enforce a notable
degree of context-awareness in applications, increase the capabilities of
interacting with the physical world, and eventually give a concrete mean-
ing to the abstract concept of agent situatedness. This paper discusses
how both sensor networks and RFID tags can be used to that purpose,
outlining the respective advantages and drawbacks of these technologies.
Then, to ground the discussion, it presents a multiagent application for
physical object tracking, facilitating the finding of “forgot-somewhere”
objects in an environment.

1 Introduction

The never ending technological progresses in miniaturization of electronic devices
and in wireless communication technologies are making possible to enrich our
everyday environments (and any objects in them) with sensing, computation,
and communication capabilities [1]. Overall, this may end up in an increased
capability of interacting with the physical world by acquiring, in a digital form
and in a wireless way, a number of information beyond the normal sensing ca-
pabilities of humans and robots, as well as in the possibility of exploiting the
devices embedded in the environment as a pervasive platform for distributed
computing and communication.

With reference to the multiagent systems paradigm and to agent-oriented
software engineering [2], the advent of such pervasive computing technologies
notably impacts on the concept of situatedness. Agents have always been as-
sumed – by very definition [3] – as entities whose activities are related to some
sensing and effective of the properties of some environment in which they situate
for execution. However, despite this, the concept of environment has always been
an overlooked topic, and a few proposals for agent languages and architectures
explicitly deal with this concept in a constructive way [4]. Pervasive computing

D. Weyns, H. Van Dyke Parunak, and F. Michel (Eds.): E4MAS 2005, LNAI 3830, pp. 187–204, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

188 M. Mamei and F. Zambonelli

technologies, by making available to application agents expressive digital infor-
mation about the environment, can leverage the concept of situatedness from a
mere conceptual definition to a practical useful feature.

Starting from the above considerations, this paper discusses which technolo-
gies can be actually used to this purpose. In particular, this paper shortly
presents both sensor network technologies [1] and RFID technologies [5], and
discusses how they can be exploited to augment the physical environments with
the possibility of easily accessing digital information, as well as with the possi-
bility of enforcing forms of stigmergic (i.e., environment-mediated) interactions
across the physical environment. A comparative analysis of these two technolo-
gies outlines their respective advantages and limitations, and their potentials in
pervasive multiagent system applications.

To ground the discussion, we presents our own experience in the implementa-
tion of a multiagent application for stigmergic physical object tracking, allowing
agents (whether in the form of autonomous robots or computer-assisted humans)
to find “forgot-somewhere” objects in an environment. The application relies on
pheromone-based interaction, and exploit RFID tags as a physically distributed
memory infrastructure in which agents can deploy pheromones and that agents
can access for reading pheromone paths spread in the environment.

The rest of this paper is organized as follows. Section 2 introduces in general
the concept of situatedness and the problem of interacting with physical environ-
ment. Section 3 presents and discusses sensor network technologies, while Section
4 presents and discusses RFID technologies. Section 5 presents our experience in
RFID-based object tracking. Section 6 concludes and outlines open directions.

2 Situatedness and Physical Environments

While the concept of situatedness plays a fundamental role in the engineering
of multiagent systems, the practical application of the concept cannot abstract
from what actual infrastructures are available to model the environment and to
interact with it. In this section, after having discussed the various facets of situ-
atedness, we analyse how pervasive computing technologies can be used to some-
how “augment” a physical environment to facilitate agents in interacting with it.

2.1 Computational vs. Physical Environments

Software systems are rarely developed to be deployed as stand-alone, isolated
systems. Rather, in most practical cases, software systems (and multiagent sys-
tems specifically) are designed for being deployed in some sort of existing com-
putational or physical environments, and have to necessarily interact with such
environments to properly accomplish their tasks [6].

As far as computational environments are concerned, modern distributed ap-
plications are always built to interact with an existing world of data, services, and
computational resources, and have to get advantage of them. For instance, in mul-
tiagent systems for Web-based applications agents are deployed in the Web and

Augmenting the Physical Environment 189

have to mine Web data to exploit available services in order to achieve specific
goals [7]. In the Grid, agents have to interact and negotiate for accessing com-
putational and memory resources [8]. In P2P systems, networks of autonomous
components (that can be assimilated to agents) have to connect and interact with
each other in order to provide access to large set of shared files [9,10].

As far as physical environments are concerned, the market is more and more
demanding for a strict inter-twining of software and the physical world. Firstly,
mobile computing technologies, enabling us to stay connected 24 by 7 from wher-
ever, require context-awareness and context-dependency, to have our computer-
supported activities properly adapted to the physical context and situation from
which we are performing them [11]. Secondly, more and more autonomous software
systems (or, which is the same, systems of autonomous robots [12]) are in need to
be deployed to monitor and/or control processes occurring in the physical world,
e.g., system for control of manufacturing processes [13] or of human activities [14].

2.2 Environment-Mediated Interactions

The considerations in the above subsection justify the adoption of situatedness
as a central concept in the engineering of multiagent systems. However, whether
one consider computational or physical environments, the role of the environment
does not simply reduce to a source of information and services, or to a set of
entities that should be controlled by the multiagent system itself. Rather, the
environment can also play the active central role of interaction medium, i.e.,
of infrastructural support for agent interactions that can occur with the active
mediation of some sort of environment.

Environment-mediated interaction (aka stigmergic interaction [15]) plays an
important role in nature. Indeed, the spreading and sensing of pheromones in
an environment to organize the activities of ant colonies, the process of mor-
phogenesis as enforced by diffusion of chemicals in the embryo, the movement
of masses induced by gravitational fields, are all examples of stigmergic inter-
actions [16]. In the last few years, however, stigmergic models of interactions
have been recognized as very powerful to facilitate interactions in dynamic dis-
tributed systems. Indeed, stigmergic models of interactions, whether relying on
synthetic pheromones, on diffusion of digital chemicals, or on spreading of vir-
tual computational fields, are being proposed to facilitate the enforcement of
adaptive interaction patterns in dynamic distributed systems and to promote
self-organization and self-adaptation of activities [15,9,14]. Thus, the presence of
some environment in which multiagent systems situates can also be exploited to
support stigmergic forms of interactions.

2.3 Augmenting Physical Environments

In the case of agents situated in a computational environment (e.g., the Web,
a P2P network, or the Grid), supporting the interaction of agents with such an
environment is a rather natural process. Simply, multiagent systems are com-
putational entities the same as the environment, and once proper data formats

190 M. Mamei and F. Zambonelli

and interaction protocols are established, the access to the computational envi-
ronment (and possibly the exploitation of such environment as an infrastructure
in which to store the units of stigmergic interactions) becomes rather easy: the
“sensors” and the “effectors” that the agents may use to interact reduce to a set
of APIs or programming constructs.

The problem is totally different in the case of a physical environment. In this
case, to access the physical environment, agents must be somehow be capable of
perceiving and affecting physical properties. To this extent, an agent (whether
in the form of an autonomous robot, or of an embedded controller, or of some
software running on a mobile devices) must be necessarily supported by some
hardware sensors and effectors to properly interact with the world.

Traditionally, most approaches for physically situated agents, assume that
agents are augmented with the necessary capabilities for sensing and effecting
the physical world. For instance, in the case of autonomous robots, traditional
approaches assume that the robot itself is equipped with videocameras, temper-
ature sensors, location sensors (e.g., GPS), and robotic hands. Such approach
tends to notably increase the internal complexity of agents. In fact, agents not
only have to perform the computational activities associated to deciding how to
accomplish a goal, but have also to take care of properly internalizing and inter-
preting the data coming form the associated sensors, and of properly controlling
their effectors to actualize their actions.

Another drawback of the above approach is that the physical environment
can hardly be used to support stigmergic models of interactions, unless one
adopt rather tricky solutions. If the environment is purely physical, in fact,
stigmergic interactions should occur by physically affecting the properties of the
environment. For example, to mimic the behavior of ants, robots would be forced
to actually pollute the environment with some kind of marker, and would have
to be equipped with sensor to perceive such marks [17].

The advent of pervasive computing technologies dramatically changes this
scenarios. The availability of small-scale and low-cost devices that can be dis-
tributed in physical environment in a non intrusive way, that can be devoted to
sense (or affect) specific properties in the environment, and that enable to inter-
act with them in a wireless way (a capability to be easily provided to agents),
enables agents to externalize all the activities devoted to interpret and control
their physical activities. Simply, sensing and effecting the environment reduces
in properly accessing some digital services. The result is in a notable reduction
of complexity in agents, both at the hardware and at the software level.

In addition, the presence in an environment of embedded computational re-
sources, as those that can be provided by the embedded computing devices,
can be fruitfully exploited as an infrastructure to support stigmergic models
of interactions. In fact, stigmergy can take place without actually affecting the
physical environment, but simply by exploiting the distributed embedded re-
sources as stores for those data structures that are at the basis of stigmergy,
e.g., pheromones, fields, etc.

Augmenting the Physical Environment 191

Clearly, depending on the specific technologies and devices adopted, the inter-
actions with the environment and the support of stigmergic coordination models
can be more or less facilitated. In the following of this paper, we analyze in detail
two different classes of devices (sensor networks and RFID tags), discuss how
they can be exploited, and outline their respective advantages and drawbacks.

3 Ad-Hoc and Sensor Network

As proved in the context of the Smart Dust project at Berkeley [18,19], it is
already possible to produce fully-fledged computer-based systems of a few cm3,
and even much smaller ones will be produced in the next few years. Such comput-
ers, which can be enriched with communication capabilities (radio or optical),
local sensing (e.g., optical, thermal, or inertial) and local effecting (e.g., opti-
cal and mechanical) capabilities, are the basic ingredients of the sensor network
scenario (see Fig. 1-top).

Such a scenario implies spreading (i.e., deploying) a large number of these
sensing devices across an environment, letting them create an ad-hoc wireless
network by communicating with each other and perform some kind of distributed
application. Traditional applications can vary from monitoring of physical pa-
rameters (e.g., monitoring weather) and distributed surveillance (e.g., tracking
vehicles crossing a specific area) (see Fig. 1-bottom).

Fig. 1. (top) Wireless sensor devices. (bottom) sensor network in an environment.

192 M. Mamei and F. Zambonelli

3.1 Deploying Digital Information

In general terms, sensor networks are an ideal platform to augment the physical
environment with digital information.

– Sensors can store data to represent some kind of contextual information.
Moreover, they can deliver such data to agents (e.g., users with PDA) passing
nearby.

– Sensors can perform computations to support and facilitate the agents’
fruition to that data. For example, sensors can propagate and diffuse data
across the network. They can automatically delete old and possibly corrupted
information. They can combine and transform data to let it become more
expressive and easy to use.

Sensors can provide agents with the data they collect to support context-
awareness. For example, an agent getting an extremely-high temperature reading
from a sensor nearby can infer the presence of fire and act consequently. Sensors
provided with GPS devices or running a beacon-based localization algorithm
[20] can provide location information. An agent getting the location of sensors
nearby can infer its own actual position.

Other than providing contextual information coming from the “outside”
world, sensor network can also be used to store and convey information pro-
duced by the agent themselves. Following this approach, the sensor network acts
as a coordination media supporting agents’ decoupled interactions and coordina-
tion [21,22]. For example, the sensors can act as a collection of distributed tuple
spaces that can be accessed by agents for the sake of enforcing coordination [23].

Moreover, relying on the sensor networking capabilities it is possible to spread
distributed data structures across the environment. Data structures can be in-
jected in the sensor network by agents and then propagate across. In addition,
sensors can run maintenance algorithms to fix the data structure to account for
changing conditions and dynamic networks [24].

To clarify these concepts let us focus on the problem of coordinating the move-
ments of some autonomous agents in a distributed environment. In particular,
we focus on the simple application of having two persons, provided with a PDA,
moving across an environment instrumented with a sensor network infrastruc-
ture. The goal of the application is to allow one person to be guided by the PDA,
to follow the other person. A simple solution based distributed data structures is
the let the person to-be-followed to spread in the environment (i.e., sensor net-
work) a data structure that increases an integer value by one at every hop as it
gets farther from the source. This creates a sort of gradient that can be followed
downhill by the other person to complete the application [25] (see Fig. 2(a)). If
the person to-be-followed moves, it is important that the data structure adjust
its shape accordingly, so that the gradient leads to that person anyway (see Fig.
2(b)). To this end, sensor nodes can run specific maintenance algorithms to keep
the data structure consistent.

Augmenting the Physical Environment 193

(a)

(b)

Fig. 2. (a) A gradient data structure enables an agent to follow another one. (b) The
data structure is updated to reflect the new agent position.

3.2 Pros and Cons

The power of this approach is that the distributed data structure provides ex-
pressive contextual information tailored for that specific task. The agent running
on the PDA does not need to know any map of the environment, nor it has to
execute complex algorithms to decide where to go. It just blindly follows the
data structure. All the complexity of the application is moved away form from
the agents and diverted into the environment-infrastructure.

Sensor networks are a powerful technology to support environment abstrac-
tions in multi-agent systems. In the long run, once current technological problems
will be properly addressed, it will be the leading infrastructure of environment
applications. Its main strength is that it is an active infrastructure: sensor nodes
can run (distributed) algorithms to process data as required. For example, sensor
nodes can proactively delete old information or run algorithm to aggregate data
on needs. At present, however, this is also sensor network main weakness. Nodes
suffer, in fact, from battery-exhaustion problems, they are costly and failure
prone.

194 M. Mamei and F. Zambonelli

3.3 Related Work

A number of recent proposals address the problem of defining supporting envi-
ronments for the development of adaptive, dynamic, context-aware distributed
applications, suitable for pervasive computing.

The TinyLime middleware [26] proposes accessing the environmental data
collected by a sensor network via an associative tuple-based mechanisms. When
a user with a mobile device “walks-through” a network of distributed sensors,
all the data collected by the in-range sensors automatically feeds a local tuple
space of the mobile device, which thus can perceive sensorial data collected by
sensors simply by reading in the local tuple space.

ObjectPlaces [27] is an interesting middleware infrastructure that offers sup-
port to exchange and share information among nodes in mobile and ad-hoc net-
works. Specifically, in ObjectPlaces, agents communicate indirectly through the
exchange of objects that can be temporarily stored across suitable object-places
(that are virtual containers stored in the ad-hoc network itself). Agents invoke
operations to add and remove objects, or to observe the content of a specific
object-place (via a pattern-matching process). Agents can also create object-
places dynamically, and link them together to form a graph-like environment
connecting related object-places.

TOTA [24] and Smart Messages [28] are two architectures for computation
and communication in large networks of embedded systems. Communication is
realized by sending “smart tuples” in the network, i.e., tuples which include code
to be executed at each hop in the network path. These models comply with the
general idea of putting intelligence in the network by letting tuples and messages
execute hop-by-hop small chunk of code to determine their propagation.

Lime [29] and XMIDDLE [30] exploits transiently tuple spaces as the basis
for interaction in dynamic network scenario. Each mobile device, as well as each
network nodes, owns a private tuple space. Upon connection with other devices
or with network nodes, the privately owned tuple spaces can merge in a federated
tuple space, to be used as a common data space to exchange information.

4 RFID Technology

Advances in miniaturization and manufacturing have yielded postage-stamp
sized radio transceivers called Radio Frequency Identification (RFID) tags that
can be attached unobtrusively to objects as small as a toothbrush. The tags
are wireless and battery free. Each tag is marked with an unique identifier and
provided with a tiny memory, up to some KB for advanced models, allowing to
store data. Tags can be purchased off the shelf, cost roughly 0.20 Euro each and
can withstand day-to-day use for years (being battery-free, they do not have
power-exhaustion problems). Suitable devices, called RFID readers, can access
RFID tags by radio, either for read and write operations. The tags respond or
store data accordingly using power scavenged from the signal coming from the
RFID reader. RFID readers divide into short- and long-range depending on the
distance within which they can access RFID tags. Such distance may vary from

Augmenting the Physical Environment 195

few centimeters up to some meters. Deploying RFID technology requires that a
number of places in the environment (e.g. doors, corridors, etc.) or objects (e.g.
beds, washing machines, etc.) are tagged with RFID tags. Tagging a place or an
object involves sticking an RFID tag on it, and making a database entry mapping
the tag ID to a name. It is worth emphasizing that current trends indicate that
within a few years, many household objects and furniture may be RFID-tagged
before purchase, thus eliminating the overhead of tagging [31]. Moreover, some
handheld devices start to be provided with RFID read and write capabilities
(the Nokia 5140 phone can be already equipped with a RFID reader [32]).

4.1 Deploying Digital Information

The set of RFID tags deployed across the environment can be regarded as an
infrastructure to store and deliver digital information.

From a general perspective, accessing the RFID tags nearby is a powerful source
of context information. For example, RFID tags can reveal the location of agents
in that tags can be associated to uniquely identified places. So reading the tag as-
sociated with “Prof. Smith desk” can let an agent infer its location as “Prof. Smith
office”. More in general, the knowledge of RFID tags (and thus objects) nearby can
possibly identify a specific application context (e.g. reading a LCD-projector tag,
and a microphone tag can let the agent infer of being in a meeting room).

In addition, given the fact that RFID tags can be written on-the-fly, agents
can use the tags as a distributed shared memory with which to exchange in-
formation. For example, RFID tags can be accessed as if they were distributed
tuple spaces [33]. A particulary significant development of this idea is related
to spreading pheromone-inspired distributed data structures across the tags in
the environment. The basic scenario consists of human users and robots carry-
ing handheld computing devices, provided with a RFID reader, and running an
agent-based application. The agent, unobtrusively from the user, continuously
detects in range tags as the user roams across the environment. Moreover, the
agent controls the RFID reader to write pheromone data structures (consisting
at least in a pheromone ID) in all the tags encountered. This process creates
a digital pheromone trail distributed across the tags. More formally, let us call
L(t) the set of tags being sensed at time t. It is easy to see that the agent can
infer that the user is moving if L(t) = L(t-1). If instructed to spread pheromone
O, the agent will write O in all the L(t)-L(t-1) tags as it moves across the envi-
ronment. For the majority of applications a pheromone trail, consisting of only
an ID, is not very useful. Like in ant foraging, most applications involve agents
to follow each other pheromone trails to reach the location where the agents that
originally laid down the trail were directed (or, on the contrary, to reach the lo-
cation where they came from). Unfortunately, an agent crossing an-only-ID-trail
would not be able to choose in which direction the agent that laid down that
trail was directed. From the agent point of view, this situation is like crossing a
road without knowing whether to turn left or right. To overcome this problem,
the agent stores in the tags also an ever increasing hop-counter associated with
O - we will call this counter C(O). In particular, if an agent decides to spread

196 M. Mamei and F. Zambonelli

pheromone O at time t, the agent reads also the counter C(O) in the L(t) set (if
C(O) is not present, the agent sets C(O) to a fixed value zero). Upon a move-
ment, the agent will store O and C(O)+1 in the tags belonging to L(t+1) that do
not have O or have a lower C(O). In addition, the basic pheromone idea requires
a pheromone evaporation mechanism to discard old - possibly corrupted - trails.
To this end we store in the tag also a value T(O) representing the time where
the pheromone O has been stored.

To read pheromones, an agent trivially accesses neighbor RFID tags reading
their memories. Since RFID read operations are quite unreliable, the agent ac-
tually performs a reading cycle merging the results obtained at each iteration.
Given the result, the agent will decide how to act on the basis of the perceived
pheromone configuration. To realize pheromone evaporation, after reading a tag,
an agent checks, for each pheromone, whether the associated timestamp is, ac-
cordingly to the agent local time, older than a certain threshold T. If it is so, the
agent deletes that pheromone from the tag. This kind of pheromone evaporation
leads to two key advantages:

1. Since the data space in RFID tags is severely limited, it would be most useful
to store only those pheromone trails that are important for the application
at a given time; old, unused pheromones can be removed.

2. If an agent does not carry its personal digital assistant or if it has been
switched off, it is possible that some actions will be undertaken without
leaving the corresponding pheromone trails. This cause old-pheromone trails
to be possibly out-of-date, and eventually corrupted. In this context, it is of
course fundamental to design a mechanism to reinforce relevant pheromones
not to let them evaporate.

With this regard, an agent spreading pheromone O, will overwrite
O-pheromones having an older T(O). From these considerations, it should be
clear that the threshold T has to be tuned for each application, to represent
the time-frame after which the pheromone is considered useless or possibly
corrupted.

4.2 Pros and Cons

The main point in favor of this approach is its extremely low cost since it uses
technologies (RFID) that are likely to be soon embedded in the scenario in-
dependently of this application. Relying on such an implementation, a wide
range of application scenarios based on pheromone interaction can be real-
ized ranging from multi-robot coordination [34], to monitoring of human
activities [35].

The main problem with this approach is related to current limitations of
RFID technology. Accessing tags for reading and writing operations can fail for
a number of hardly controllable issues (electromagnetic disturbances, metallic
objects nearby, interferences and collisions, etc.). Moreover, in the next section,
we will present and discuss some limitations in our RFID implementation of the
pheromone evaporation mechanism.

Augmenting the Physical Environment 197

4.3 Related Work

Several proposals, as well as ours, consider the idea of having mobile devices
integrated with a RFID reader, thus having the capability of accessing RFID
tags around, as sorts of digital contextual information stores. However, rather
than considering the possibility of storing new information in RFID tags and
enforcing coordination through them, most approaches exploit RFID tags only
for reading pre-existent environmental/contextual information. For instance, the
system described in [36] proposes associating location information with tags (e.g.,
“I am the tag of the living room”) that can be read by mobile robots carrying
on a RFID reader to roughly localize themselves.

The system described in [35] exploits RFID tags for inferring information
about contextual activity in an environment. Users are assumed to wear an
RFID reader connected with a Wi-Fi portable device so that, when the user
moves and acts in the environment, the type and the sequence of tags read by
the reader can suggest what the user is doing. For example, reading the tag
associated to the user boss and of a video projector can let infer that the user
is in a sort of important meeting with his/her boss.

Pheromones spread in the environment can enable a group of users (both
humans and robotics) to coordinate their respective movements. An exemplary
application would be distributed environment exploration. Users could decide
to explore a specific area if there are not pheromones pointing in that direction
(the area is truly unexplored). In this context, it is important to remark that
this approach clearly requires the presence of RFID tags before pheromones can
be spread. If the environment does not contain tags at all, this approach could
not be used. However, on the one hand, RFID tags are likely to be soon densely
present in everywhere (embedded in tiles, bricks, furniture, etc.). On the other
hand, it is possible to conceive solutions where agents physically deploy RFID
tags while exploring the environment to be used for subsequent coordination. For
instance, future development in plastic (and printable) RFID technology [37] let
us envision the possibility of enriching an agent with a simple RFID printer to
dynamically print in pavements, walls, or any type of surface, RFID tags.

5 Pheromone-Based Object Tracking

In this section, to ground the discussion, we present a concrete application to
test the introduced RFID approach. It consists in an agent-based application to
easily find everyday objects (glasses, keys, etc.) forgot somewhere in our homes.
The application allows everyday objects to leave virtual pheromone trails across
our homes to be easily tracked afterwards.

5.1 Overview

Overall, the object tracking application work as follows:

– The objects to be tracked need to be tagged. For sake of clarity, we will refer
to these tags as object-tags to distinguish them from the tags identifying
places in the environment.

198 M. Mamei and F. Zambonelli

– Agents (either robotic or humans) are provided with a handheld computing
device, connected to a RFID reader, and running an agent-based application.

– The agent-based application can detect, via the RFID reader, object-tags
carried on by the user. Exploiting the mechanism described in the previous
section, it can spread a pheromone identifying such objects into the available
memory of near tags.

– This allows the object to leave a pheromone trail across the tags in the
environment.

– When looking for an object, a user can instruct the agent to read in-range
tags searching the object’s pheromone in their memory. If such pheromone
is found, the user can follow it to reach the object current location.

– Once the object has been reached, if it moves with the user (i.e. the user
grabbed it), the agent automatically starts spreading again the object asso-
ciated pheromone, to keep consistency with the new object location.

This application naturally suits a multi-user scenario where an user (or a
robot), looking for an object moved by another user, can suddenly cross the
pheromone trail the object left while moved by the other user.

5.2 Spreading Pheromones to Track Object

To spread pheromones, the agent needs first to understand which objects are
currently being carried (i.e. moved around) by the user. To perform this task
unobtrusively, it accesses the RFID reader to detect in-range RFID tags once a
second. Let us call O(t) the set of object-tags being sensed at time t, L(t) the
set of tags being sensed at time t. If the agent senses an object-tag O such that
O ∈ O(t), O /∈ O(t-1), but L(t) = L(t-1), then the agent can infer that the user
picked-up the object O and the object is moving around. In this situation, the
agent has to spread O pheromone in the new location. To this end, the agent
writes O in the available memory space of all the L(t) tags that do not already
contain O. This operation is performed, for every object O, upon every subse-
quent movement. Similarly, if the agent senses that an object-tag O ∈ O(t-1),
but O /∈ O(t), then the agent infers that the user left object O. When this situa-
tion is detected the agent stops spreading O pheromone. These operations create
pheromone trails of the object being moved around.

Once requested to track an object O the agent will start reading, once per
second, nearby tags looking for an O-pheromone within the sensed tags L(t). If
such a pheromone is found, this implies that the user crossed a suitable pher-
omone trail. There are two alternatives: either in L(t) there are two tags having
O-pheromones with different C(O), or L(t) contains only one tag. In the former
(lucky) case, the agent notifies the user about the fact it has crossed a pheromone
trail and it suggest to move towards those tag having the higher C(O) . In the
following, we will refer to this as grad-search, since it is like following a gradient
uphill. In the latter (unlucky) case, the agent notifies the user about the fact it
has crossed a pheromone trail, but nothing else. In such situation, the user has
to move in the neighborhood, trying to find higher C(O) indicating the right

Augmenting the Physical Environment 199

direction to be followed (this is like dowsing – i.e. finding underground water
with a forked stick – but it works!). In the following, we will refer to this as
local-search. Following the agent advices, the user gets closer and closer to the
object by following its pheromone trail, until reaching it.

5.3 Implementation and Experiments

To assess the validity of the presented approach and the effectiveness of the object
tracking application, we developed a number of experiments, both adopting the
real implementation and an ad-hoc simulation (to test on the large scale).

Implementation. The real implementation consisted in tagging places and ob-
jects within our department. Overall, we tagged 100 locations within the building
(doors, hallways, corridors, desks, etc.) and 50 objects (books, laptops, cd-cases,
etc.). Locations have been tagged with ISO15693 RFID tags, each with a storage
capacity of 512 bits (each tag contains 30 slots, 1 byte each, thus it is able to

a) b)

c)

Fig. 3. (a) Our test-bed hardware implementation. (b) Some tagged objects. (c) The
Lego Mindstorms robots performing pheromone search.

200 M. Mamei and F. Zambonelli

store 10 pheromones). Objects have been tagged with ISO14443B RFID tags,
each with a storage capacity of 176 bits (each tag contains only the object ID)
[38]. In addition, we set up three HP IPAQ 36xx running Familiar Linux 0.72 and
J2ME (CVM - Personal Profile). Each IPAQ is provided with a WLAN card and
a M21xH RFID reader. Each IPAQ runs the described agent-based application.
Finally, a mobile robot has been realized by installing one of our wireless IPAQ
(connected to a RFID reader) on a Lego Mindstorms robot (see Fig. 3).

To test on the large scale, we realized a JAVA-based simulation of the above
scenario. The simulation is based on a random graph of places (each associated
to a tag), and on a number of objects (each associated to an object-tag) ran-
domly deployed in the locations-graph. Each tag has been simply realized by
an array of integer values. A number of agents wanders randomly across the
locations-graph collecting objects, releasing objects, and spreading pheromones
accordingly. At the same time, other agents look for objects in the environment
eventually exploiting pheromone trails previously laid down by other agents. For
the sake of comparison, we implemented 3 search algorithms: in blind-search, an
agent explores the locations-graph disregarding pheromones. In local-search, the
agent perceives the pheromones in its current node, but it cannot see the di-
rection in which the pheromones increase. In grad-search, the agent perceives
pheromones together with the directions in which they increase. The simulator,
allows to perform a number of experiments changing a number of parameters
such as the graph size, the number of objects, the number of agents involved,
the storage capacity of the tags, etc.

a)

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

time

#
 l
o

c
a
ti

o
n

s
 s
e
a
rc

h
e
d

 b
e
fo

re

fi
n

d
in
g

 a
n

 o
b
je

c
t

BLIND SEARCH LOCAL SEARCH GRAD SEARCH

b)

Fig. 4. Number of places visited before finding a specific object plotted over time. (a)
100 tagged places. (b) 2500 tagged places.

Augmenting the Physical Environment 201

Experiments. A first group of experiments (reported in Fig. 4) aims at verify-
ing the effectiveness of the application. Specifically, we set up two environments:
one consisting of 100 tagged places with 100 objects (Fig. 4-a) and another con-
sisting of 2500 tagged places with 500 objects (Fig. 4-b). 10 agents populate these
environments wandering around moving objects and spreading pheromones and,
at the same time, looking for specific objects. In the experiments, we report the
number of places visited (i.e. number of tags perceived) before finding specific
objects, for different search methods, plotted over time. These results are the
average of a number (over 300) of simulated experiments and verified - on a
smaller scale - on the real implementation.

The more time passes the more pheromone trails get deployed. It is easy to
see that blind-search does not take advantage of pheromone trails and in fact
objects are found after visiting on-average half of the places. Grad-search takes a
great advantage of pheromones, in fact, after several pheromone trails have been
deployed, less than 10% of the places need to be visited before finding the object.
Local-search is useful only in large scenarios: the time taken wandering randomly
in a neighborhood, looking for the direction where a pheromone increases, hides
pheromone benefits in small environments.

A second group of experiments aims at exploring the effects of RFID tag stor-
age saturation upon pheromone spread. This of course represents a big problem,
in fact, it can happen that pheromone trails can be interrupted, because there is
not available space left on neighbor tags, while the object to be tracked moves
away. This create a broken pheromone trail leading to a place that is not the
actual location of the object.

In Fig. 5, we report an experiment conducted in the 100-tagged-places-
environment described before. This time the tag capacity has been fixed to 50
pheromones (150 bytes), and we plot the number of places visited before finding
specific objects, for different search methods, over time. Let us focus again on the
grad-search behavior. It is easy to see that, when time is close to zero, grad-search
works equal to blind-search, since no pheromone trails have been already laid down.
After some time, grad-search works considerably better than blind-search, since
pheromone trails drive agents. However, as time passes, tags capacity tend to sat-
urate, the objects are moved, but no pheromone trails can be deployed. This situ-
ation rapidly trashes performance leading back to blind-search performance.

0

10

20

30

40

50

60

70

80

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145

time

#
 l
o

c
a
ti

o
n

s
 s
e
a
rc

h
e
d

 b
e
fo

re

fi
n

d
in
g

 a
n

 o
b
je

c
t

BLIND SEARCH LOCAL SEARCH GRAD_SEARCH

Fig. 5. Number of visited places before finding a specific object plotted over time, when
tags tend to saturate

202 M. Mamei and F. Zambonelli

We get two main lessons from the above experiments.
First Lesson: in small environments grad-searches work considerably better

than local-searches. However, this is not longer true in large environments, where
the two methods have almost the same performance. This is clearly because
the cost of “orienting” in a local neighborhood becomes negligible when the
environment is large. Moreover, the drawback of grad-searches is the need for
longer-range (more costly) RFID reader: the reader, in fact, must be capable of
reading tags in a “one-hop” neighborhood. On the contrary local-searches can
work with shorter-range (cheaper) RFID reader as well. Overall, the experiments
conducted show that in near-future environments (with thousands of objects and
places being tagged) local-search is a promising approach.

Second Lesson: the limited storage capacity of the RFID tags is a big problem.
Basically, if the number of objects to be tracked is greater than the available slots
on the RFID tag, in the long run the problem is unavoidable. Sooner or later, a
new object will cross to an already full tag, breaking the pheromone trail. We
still do not have a solution for this problem. Our research with regard to this
topic is leading in two main directions: (i) we are currently researching more
advanced pheromone evaporation mechanisms. (ii) We are considering the idea
of spreading pheromone trails not only in tags but also on object-tags. The
advantage would be that the more objects are in the system, the more storage
space is available for pheromones, letting the system to scale naturally. The
problem is how to manage the fact that object-tags containing pheromones can
be moved around, breaking the pheromone trail structure. As a partial relief
from this problem, it is worth reporting that, recent RFID tags have a storage
capacity in the order of the KB, making possible to track thousands of objects
without changing our application.

6 Conclusion and Future Work

This paper presented the role of sensor network and RFID-based infrastructures
to support environment abstraction in pervasive computing scenarios. These
infrastructures not only allow agents to acquire context information, but also
can serve as suitable media to support their coordination activities.

Our future work in this direction is twofold. On the one hand, we will try
to solve technological problems related to current hardware limitations (e.g. the
RFID saturation problem). On the other hand, we will try to apply environment
abstractions and situatedness to several pervasive computing scenarios.

References

1. Estrin, D., Culler, D., Pister, K., Sukjatme, G.: Connecting the physical world
with pervasive networks. IEEE Pervasive Computing 1 (2002) 59 – 69

2. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
the gaia methodology. ACM Transactions on Software Engineering and Method-
ology 12 (2003) 417 – 470

Augmenting the Physical Environment 203

3. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. The
Knowledge Engineering Review 10 (1995) 115–152

4. Weyns, D., Parunak, V., Michel, F., Holvoet, T., Ferber, J.: Environments for
Multiagent Systems, State-of-the-art and Research Challenges. Springer Verlag -
LNAI 3374 (2005)

5. Want, R.: Enabling ubiquitous sensing with rfid. IEEE Computer 37 (2004) 84 – 84
6. Zambonelli, F., Parunak, H.V.D.: Signs of a revolution in computer science and

software engineering. In: 3rd International Workshop on Engineering Societies in
the Agents World. Volume 2577 of LNCS. Springer Verlag (2003) 13–28

7. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
(2001)

8. Foster, I., Kesselman), C.: The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann, San Francisco (CA) (1999)

9. Babaoglu, O., Meling, H., Montresor, A.: A framework for the development
of agent-based peer-to-peer systems. In: 22nd International Conference on
Distributed Computing Systems. IEEE CS Press, Vienna, Austria (2002) 15 – 22

10. Ripeani, M., Iamnitchi, A., Foster, I.: Mapping the gnutella network. IEEE
Internet Computing 6 (2002) 50–57

11. Davies, N., Cheverst, K., Mitchell, K., Efrat, A.: Using and determining location
in a context-sensitive tour guide. IEEE Computer 34 (2001) 35 – 41

12. Nourbakhsh, I., Sycara, K., Koes, M., Yong, M., Lewis, M., Burion, S.: Human-
robot teaming for search and rescue. IEEE Pervasive Computing 4 (2005) 72 – 78

13. Bussmann, S.: Agent-oriented programming of manifacturing control tasks. In:
Proceedings of the 3rd International Conference on Multi-Agent Systems. IEEE
CS Press, Paris (F) (1998) 57–63

14. Mamei, M., Zambonelli, F.: Physical deployment of digital pheromones through
rfid technology. In: IEEE Swarm Symposium. IEEE CS Press, Pasadena (CA),
USA (2005)

15. Parunak, V.: Go to the ant: Engineering principles from natural agent systems.
Annals of Operations Research 75 (1997) 69–101

16. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence. From Natural to
Artificial Systems. Oxford University Press, Oxford (UK) (1999)

17. Svennebring, J., Koenig, S.: Building terrain covering ant robots: a feasibility
study. Autonomous Robots 16 (2004) 313 – 332

18. Berlin, A., Gabriel, K.: Distributed mems: New challenges for computation.
Computing in Science and Engineering 4 (1997) 12 – 16

19. Pister, K.: On the limits and applicability of mems technology (2000) Defense
Science Study Group Report.

20. Nagpal, R., Shrobe, H., Bachrach, J.: Organizing a global coordinate system
from local information on an ad hoc sensor network. In: Proceedings of the
International Workshop on Information Processing in Sensor Networks. Number
2634 in LNCS. Springer-Verlag, Palo Alto, California, USA (2003)

21. Gelernter, D., N.Carriero: Coordination languages and their significance.
Communication of the ACM 35 (1992) 96 – 107

22. Cabri, G., Leonardi, L., Zambonelli, F.: Engineering mobile agent applications
via context-dependent coordination. IEEE Transaction on Software Engineering
28 (2002) 1040 – 1056

23. Cabri, G., Leonardi, L., Mamei, M., Zambonelli, F.: Location-dependent services
for mobile users. IEEE Transactions on Systems, Man, and Cybernetics 33 (2003)
667 – 681

204 M. Mamei and F. Zambonelli

24. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations with the tota middleware. In: Proceedings of the International Conference
On Pervasive Computing (Percom). IEEE CS Press, Orlando, Florida, USA (2004)

25. Mamei, M., Zambonelli, F., Leonardi, L.: Co-fields: A physically inspired approach
to distributed motion coordination. IEEE Pervasive Computing 3 (2004) 52 – 61

26. Curino, C., Giani, M., Giorgetta, M., Giusti, A., Murphy, A., Picco, G.: Tinylime:
Bridging mobile and sensor networks through middleware. IEEE CS Press (2005)

27. Weyns, D., Schelfthout, K., Holvoet, T.: Exploiting a virtual environment in
a real-world application. In: Proceedings of the International Workshop on
Environments for Multiagent Systems, Utrecht, NL (2005)

28. Borcea, C., Iyer, D., Kang, P., Saxena, A., Iftode, L.: Cooperative computing for
distributed embedded systems. In: Proceedings of the International Conference
on Distributed Computing Systems. IEEE CS Press, Wien, Austria (2002)

29. Picco, G., Murphy, A., Roman, G.: Lime: a middleware for logical and phys-
ical mobility. In: Proceedings of the International Conference on Distributed
Computing Systems. IEEE CS Press, Providence, Rhode Island, USA (2001)

30. Mascolo, C., Capra, L., Zachariadis, Z., Emmerich, W.: Xmiddle: A data-sharing
middleware for mobile computing. Wireless Personal Communications 21 (2002)
77 – 103

31. (Smart-Mobs) http://www.smartmobs.com.
32. (Nokia-Mobile-RFID-Kit) http://www.nokia.com/nokia/0,,55738,00.html.
33. Mamei, M., Quaglieri, R., Zambonelli, F.: Making tuple spaces physical with rfid

tags. In: Proceedings of the Symposium on Applied Computing (SAC). ACM
Press, Dijon, France (2006)

34. Payton, D., Daily, M., Estowski, R., Howard, M., Lee, C.: Pheromone robotics.
Autonoumous Robots 11 (2001) 319 – 324

35. Philipose, M., Fishkin, K., Perkowitz, M., Patterson, D., Fox, D., Kautz, H.,
Hahnel, D.: (Inferring activities from interactions with objects)

36. Kulyukin, V., Gharpure, C., Nicholson, J., Pavithran, S.: Rfid in robot-assisted
indoor navigation for visually impaired. In: Proceedings of the International
Conference on Intelligent Robots and Systems. IEEE CS Press (2004)

37. Collins, G.: Next stretch for plastic electronics. Scientific American (2004)
38. (Autentiweb) http://www.autentiweb.com.

The Environment: An Essential Abstraction
for Managing Complexity in MAS-Based

Manufacturing Control

Paul Valckenaers1 and Tom Holvoet2

1 K.U. Leuven, Dept. of Mechanical Engineering,
B-3001 Heverlee, Belgium

Paul.Valckenaers@mech.kuleuven.be
http://www.mech.kuleuven.be/macc/

2 K.U. Leuven, Dept. of Computer Science,
B-3001 Heverlee, Belgium

Tom.Holvoet@cs.kuleuven.ac.be

Abstract. This paper analyses the concept of an environment for multi-
agent systems from the perspective of a class of manufacturing control
systems using stigmergy. The discussion reveals that significant responsi-
bilities can be attributed to the environment as an essential abstraction in
MAS. Analysis shows that the environment is well positioned to manage
functionalities of multi-agent systems that otherwise would be scattered
over the agents, execution platform and communication infrastructure.
Importantly, the environment represents a significant contribution han-
dling the complexity of manufacturing control applications and providing
a common repository for subsystems originating from different parties.

1 Introduction

This paper presents insights and results originating from research on multi-agent
manufacturing control, in particular concerning environments for multi-agent
systems. Manufacturing control systems supervise process control systems and
handle factory operations. A manufacturing control system decides about the
routes that the products follow, it decides when and where operations on the
products start, when the machines receive preventive maintenance, etc. In con-
trast, it does not deal with the production processes themselves. After initiating
processing, process control takes over and reports the result. Manufacturing
control must handle all possible processing outcomes, some of which disturb the
manufacturing operations significantly - e.g. process failures causing the need
for a repair.

Manufacturing control is a complex task because of the non-linear nature
of the underlying production system, the uncertainties stemming from the en-
vironment and the production processes, and the combinatorial growth of the
decision space. Schedules and plans, originating from higher levels in a manufac-
turing organization, are known to become ineffectual within minutes on a factory

D. Weyns, H. Van Dyke Parunak, and F. Michel (Eds.): E4MAS 2005, LNAI 3830, pp. 205–217, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

206 P. Valckenaers and T. Holvoet

floor. Manufacturing is a very dynamic environment and handling changes and
disturbances is high on its list of research challenges.

The performance of a manufacturing system affects the competitiveness of
manufacturing organizations. The aspect of a production system that determines
actual performance - the bottleneck - is subject to change. Indeed, this bottle-
neck normally is the prime target for investments and system enhancements,
after which something else becomes this critical aspect. Likewise, market de-
mand fluctuations may switch the control system’s objective from throughput
maximization toward lead-time minimization. This represents a formidable chal-
lenge to the decision-optimizing components of a manufacturing control system,
and implies that changing the decision-making mechanism must not create an
avalanche of software maintenance work.

The research - discussed in this paper - targets the above challenges and in
particular the handling of changes and disturbances, a common weakness of the
existing control systems in industrial practice. It also aims for a software system
architecture in which the decision-making is confined to system components that
can be modified without causing an avalanche of software maintenance involving
other parts of the manufacturing control system.

This paper discusses a specific multi-agent manufacturing control system,
based on the PROSA architecture [1] and employing bio-inspired coordination
mechanisms [2]. This design heavily relies on indirect coordination and com-
munication - i.e. stigmergy [3]. Moreover, the design addresses the requirement
to shield most of the software from unavoidable and frequent changes [4], es-
pecially concerning the decision-making, resulting in software components that
reflect parts of the relevant reality as much as possible (analogous to using maps
in navigation systems).

Note however that this manufacturing control system design is not the main
contribution of the paper. The core issue in this paper is the environment as a
first-class abstraction in multi-agent systems. Indeed, the heavy use of indirect
coordination, the presence of a complex physical environment (production sys-
tem), and the system design approach [4] to facilitate the survival of changes by
the software components, naturally lead to assigning the concept of an environ-
ment a key role in MAS.

The focus of this paper is to reformulate the manufacturing control approach
using the environment concept and, doing so, to show how this helps in dealing
with the complexity faced by the developers of multi-agent manufacturing control
(and similar) systems. Through this exercise, the paper identifies functionalities
of an environment for MAS targeted at this application domain (coordination
and control of activities in a macroscopic physical world in which resource allo-
cation is a key issue) and validates and/or evaluates recent theoretical claims on
environments for MAS.

This paper first discusses the multi-agent manufacturing control systems.
Next, it concisely discusses what the responsibilities are that can be attributed
to a MAS environment. Finally, the MAS environment for multi-agent manufac-
turing control is addressed, followed by conclusions.

The Environment: An Essential Abstraction for Managing Complexity 207

2 Multi-agent Manufacturing Control and Ants

This section presents the multi-agent manufacturing control system design. This
is background material for the subsequent sections and the reader is referred to
the proper references [1][2][4] for more details. Therefore, there is no comparison
of this research to work by others. This section aims to keep this paper readable
by itself. In short, we can say that the design delivers different functionality
in comparison to related work that addresses decision-making components as
their main concern [5][6][7][8]. In contrast, the control systems in this paper
postpone that aspect (i.e. how to make decisions) as much as possible. As an
analogy in the domain of navigation, the work by others focuses on generating
route descriptions whereas the work in this paper focuses on creating maps.
Importantly, it develops a subsystem that predicts near-future system states
given the decision-making mechanisms. The reader should keep this property
of these multi-agent manufacturing control systems in mind to avoid confusion
when looking for the decision-making components in the design.

2.1 PROSA

The manufacturing control systems in this paper implement the PROSA refer-
ence architecture. This acronym denotes Product-Resource-Order-Staff Archi-
tecture [1]. The structure of systems designed along the PROSA architecture is
composed of three types of basic agents:

1. Resource agents correspond to a physical part - e.g. a production resource in
the manufacturing system - and contain an information processing part that
controls their resource. They offer processing capacity and functionality to
the surrounding agents. In manufacturing control systems, a resource agent is
an abstraction of the production means such as machines, conveyors, pallets,
raw materials, tool holders, material storage, personnel, floor space, etc. Each
resource agent reflects a physical resource, is able to drive this resource,
and keeps its resource-state-reflecting internal model synchronized with this
resource’s actual state.

2. Order agents represent tasks in the underlying system. They are responsi-
ble for performing the assigned work correctly and on time. In manufac-
turing control systems, an order agent manages the physical product being
produced, the product state model, and all logistic information processing
related to the job. An order agent may represent customer orders, make-
to-stock orders, prototype-making orders, orders to maintain and repair re-
sources, etc.

3. Product agents hold the process and product knowledge to assure the cor-
rect making of a product with sufficient quality. As such, they contain the
”product model” of their product type, not the ”product state model” of one
physical product instance being produced. The product agent acts as an in-
formation server to the other agents, delivering the right recipes in the right
place. It knows how to make a product without making any decisions about

208 P. Valckenaers and T. Holvoet

when and where production takes place. In object-oriented terminology, a
product agent corresponds to a product class, an order agent to a product
instance (or more precisely a product being instantiated).

These basic agents are structured through aggregation and specialization. An
agent may belong to several aggregations and aggregated agents can dynamically
change their contents. For instance, membership of a batch order agent may
depend on the timely arrival of the prospective members. Aggregated agents may
emerge out of the self-organizing interaction of agents or they may be designed
up front. The number of aggregation levels depends on the specific needs of a
certain system, and is not dictated by the architecture. Aggregation reduces
exposure of the individual agents and increases software reuse. For instance, a
shopping list agent simply creates new agents for each item on the shopping list
and manages the aggregate; the production of the individual items is delegated
to the corresponding item agents.

Specialization allows a layered implementation of the agents, where the higher
layers can be shared and, more importantly, used as interfaces to the remainder
of the coordination and control system. For instance, in a manufacturing control
system there will be a specialization hierarchy starting from agent along resource
agent, transport resource agent, toward conveyor belt agent. Importantly, any
agent working with resource agents will perform its duties regardless of which
more specialized kinds of resource agents it is interacting with.

Staff agents, as in human organizations, can be added to assist the basic
agents with expert knowledge. These agents often reflect functions such as plan-
ning systems. However, they only produce advice and never hold final respon-
sibilities concerning command and control of the underlying system. In certain
ways, these agents reflect information rather than being a function. The weak
coupling (advice-only) effectively limits the mutual exposure of the agents and
eases integration.

Furthermore, relentless usage of delegation characterizes the interaction
amongst the basic PROSA agents, which limits their exposure to system prop-
erties outside their own scope. Product agents never accept to manage state
information about ongoing tasks and delegate this to the order agent. Product
agents receive an object representing the state of a task from the corresponding
order agent whenever they need this information to perform their tasks. Like-
wise, order agents always consult product agents about possible ways to proceed
with their task.

2.2 Coordination and Stigmergy

Stigmergy. The basic PROSA design has been augmented to support stigmergy.
Grassé introduced this word to describe how signs in the environment are used
to coordinate activities of social insects, replacing direct communication [3]. The
display of goods with price labels in shops is an example of manmade stigmergy;
road signs are another example. To support stigmergy, information spaces are
attached to the basic PROSA agents. In the current systems, only information

The Environment: An Essential Abstraction for Managing Complexity 209

spaces attached to resource agents are relevant. Any agent acquainted with a
resource agent is able to place, retrieve and modify software objects on its at-
tached information space, somewhat analogous to medical staff using clipboards
attached to hospital beds in old movies.

The information on these boards has a finite lifetime. When the information
progresses beyond a given age, it is discarded. Agents must refresh information
on these boards fast enough if they want it to remain available for other agents
observing the information space. This is a generic mechanism to handle changes:
any stale information simply disappears when it becomes too old. The frequency
at which information is refreshed and the upper bound on its lifetime determine
how fast the system will observe changes. Hence, a system designer must trade
communication and computing effort against the delay at which changes become
known throughout the manufacturing control system.

Coordination. Historically, the control system design originated out of inspira-
tion by the coordination through stigmergy in food-foraging ant colonies [9].
However, the design has evolved significantly and, presently, the analogy with
social insects often confuses rather than helps the discussion. Nonetheless, our
terminology still reflects this source of inspiration. In an ant colony, ants deposit
information in their environment (pheromones) informing other ants about re-
mote facts (how to find food). The PROSA agents create agents for similar
purposes (i.e. system-wide coordination; see below). These agents are called ant
agents or simply ants in the remainder of this text.

In the current designs, ant agents are associated to a resource agent, which
is their current position. The ant agents query their resource agent about its
connections to neighboring resource agents and use this to virtually navigate
through the manufacturing system, more precisely through the network of re-
source agents reflecting the manufacturing system. Ant agents get their initial
position - association to a resource agent - at creation time. Ant agents typi-
cally originate from basic PROSA agents, and perform an information retrieval
and dissemination task on behalf of the PROSA agent. Ant agents are created
at a given rate, among others, to refresh information before it expires on the
information spaces.

The manufacturing control systems all contain three types of ant agents (spe-
cific implementations may use additional ant types for other coordination pur-
poses). Feasibility ants constitute a first type of ant agents. They put signposts
on the information spaces enabling order agents to decide locally which rout-
ing options are available to them. Resource agents that correspond to a product
shipping area (factory exits) create feasibility ants at a suitable frequency. These
ant agents virtually navigate through the factory in the opposite direction of the
production flows (i.e. upstream). During their journey, the feasibility ants query
resources, which they visit, about their processing capabilities, collecting infor-
mation that describes all possible process plans that can be executed downstream
from the current position. In addition, the ant agents deposit their information
on the information spaces that they encounter on their journey, merging it with

210 P. Valckenaers and T. Holvoet

information from other ant agents of their own generation. This information
constitutes signposts for other agents representing the hard constraints in the
manufacturing system. If an order agent obeys these signposts, it will eventually
get produced in a technically correct manner. Note that such signposts permit
a product agent to determine which part of the process plan can be executed
downstream. Locally available information describes non-local system properties.

Secondly, order agents create at a regular frequency ant agents that will scout
for possible solutions. Such an exploring ant generates one possible feasible so-
lution by traveling virtually through the factory and by making the resource
agents virtually perform the required processing steps. The exploring ant is cre-
ated at the location of its order agent. It queries the associated resource agent
about the ongoing activity. For instance, the order is queued on a conveyor belt
and the conveyor belt agent reports the estimated time when the order will reach
the end of the belt. The ant agent virtually moves to the end of the conveyor
belt and progresses its virtual clock to this estimated time. At the end of the
conveyor belt, the exploring ant retrieves the signposts, placed by the feasibility
ants, and presents them to the associated product agent to learn the available
routing options. The exploring ant selects one of the available options and con-
tinues its virtual journey. When the exploring ant arrives on a processing unit, it
retrieves the processing capabilities from the resource agent and presents them
to the product agent to discover which processing steps can be performed. In ad-
dition, the signpost information is used to decide whether leaving the processing
unit is already an option. Again, the ant agent selects and virtually executes an
option that is available. Importantly, exploring ants rely on resource agents to
provide sound estimates for the duration of transport and processing steps. To
this end, resource agents have a ’reservations department’ that answers queries
about capacity availability. However, this ’reservations department’ cannot prop-
erly answer queries without an informed estimate of future usage of the resource;
it needs future visitors to book (make a reservation).

The third type of ant agents, the intention ants, performs this task. Intention
ants reserve capacity at the resources on behalf of their order agent. When an
exploring ant finds a solution, it reports back to the order agent. This order
agent evaluates the performance of this solution (e.g. rush orders rank solutions
by their estimated finishing time) and it maintains a small collection of attrac-
tive solutions. At a given moment, the order agent selects the most attractive
solution to become its intention, and starts to create intention ants at a regular
frequency. Intention ants behave in the same manner as the exploring ants ex-
cept for two aspects. First, it follows the route specified by the order intention
and reports back the estimated performance of this intention, accounting for the
consequences of any changes in the system (e.g. a machine breakdown). Second,
the intention ant informs all the resource agents on its journey of the order in-
tentions. In other words, it books the required capacity on the resource. Thus,
the resource agents receive the necessary information to calculate a short-term
forecast of their utilization. This enables the resource agents to give accurate an-
swers to the queries by exploring and intention ants alike. Importantly, bookings

The Environment: An Essential Abstraction for Managing Complexity 211

must be refreshed regularly. Otherwise, the reservation is discarded and becomes
available for other users.

The above combination of exploring and intention ants provides both order
agents and resource agents with short-term forecasts. Again, this paper does not
discuss the merits and limitations of this system design. The purpose is to reveal
how this class of systems benefits from having the environment as a first-class
abstraction in MAS.

3 The Environment

“Environments for multi-agent systems” is an emerging research topic [10][11].
Although discussions are only recently setting off, some attributes and aspects
are already emerging. Weyns and Holvoet distinguish an initial list of character-
istics [10]:

1. Independent and actively self-supporting,
2. Offering support services for the situated agents therein to pursue their goals,
3. Possibly having maintenance goals, but never one-shot achievement goals,
4. Coordination medium for the situated agents therein,
5. Enforcing system-wide constraints (laws),
6. Unbounded and open,
7. Observable and actuate-able.

This list of characteristics is helpful in mentally identifying what an environ-
ment for MAS is, but it does not constitute a sound starting ground for the
development of environment entities. Certainly, it was not usable for mapping
responsibilities from the multi-agent manufacturing control systems onto envi-
ronment entities. To this end, the initial list of features of environments is more
helpful [10]:

1. Structuring: the environment acts as a structuring entity for the multi-agent
system. This structuring can be spatial, organizational,. . . and it defines the
rules governing the relationships facilitated by the structuring features.

2. Resources: the environment provides resource management in a broad sense.
3. Ontology: agents must be able to understand their environment.
4. Communication: the environment facilitates and regulates the communica-

tion activities.
5. Action processing: the environment is the natural medium through which

agents can act upon the world. Note that this aspect is largely an unexplored
field offering many non-trivial research challenges.

6. Perception: the agents observe the world through the environment in man-
ners similar to action processing, sharing the need for extensive further re-
search.

7. Environmental processes: the environment handles choice-free but possibly
stochastic ongoing processes (e.g. evaporation of pheromones).

Observing the agent community’s research activities and results from the per-
spective of manufacturing, especially the last three items represent almost virgin

212 P. Valckenaers and T. Holvoet

territory in which formidable but rewarding research challenges can be found.
Note that these features probably cannot be tackled independently, especially
in the situation where the agents face constraints concerning the observe-ability
and actuate-ability of the (physical and/or manufacturing) environment.

The above list of features proved to be a workable structure to identify re-
sponsibilities that can be assigned to the environment and environment entities,
seen from the perspective of the multi-agent manufacturing control systems dis-
cussed earlier. The next section discusses this in detail.

4 Environments for Manufacturing Control MAS

This section roughly follows the list of features for environments and environment
entities proposed by Weyns and Holvoet; it first addresses the structure-related
issues followed by the activity-related ones [10]. The discussion reveals that it
is indeed possible to lift out environment entities. Implicitly, this reveals how
explicit support thereof will significantly ease the development and implementa-
tion of the multi-agent manufacturing control systems, if only because the effort
can be shared with other developments. It also facilitates integration of software
that was developed independently but targeting the same MAS environment.

4.1 Structure-Related Features

Structuring. The environment embedded in the multi-agent manufacturing con-
trol systems supports a lumped graph model of the real world - i.e. a manu-
facturing plant and the entities therein. The factory floor/building constitutes
the root node of the graph. Each entity - machine, product part - in the fac-
tory is another node in this graph. Each node has a finite number of exits and
entries (node attributes). Entries connected to exits constitute an edge in this
graph model of the world; these are peer-to-peer edges. Another type of edges
corresponds to parent-child relations between entities; examples are a workpiece
(child) located on a machine (parent) and a machine (child) on the factory floor
(parent).

The graph changes over time according to the laws of this environment. For
instance, when a machine enters the factory, a parent-child edge is created be-
tween the root and this machine; the attributes of the edge include its position.
When machine entries or exits are hooked up to exits or entries of neighbor-
ing equipment, peer-to-peer edges are created. When a part or a tool arrives
on the machine, a parent-child edge is created, attributed by its position. The
environment maintains this graph model and keeps it synchronized with reality.

This environment provides a lumped model of the world in contrast to geo-
metrical and/or physical models. Physical and geometrical properties are sup-
ported through attributes or functions/methods associated to the nodes and
edges in the graph. For instance, the location of a machine on the factory floor
is an attribute of the parent-child edge connecting these two nodes. The main
motivation is efficiency. An explicit geometrical/physical model currently is be-
yond the state-of-the-art. Note that in a rigid-body world, the state vector of an

The Environment: An Essential Abstraction for Managing Complexity 213

entity has 12 coordinates -comprising position, orientation, linear velocity and
rotational momentum - in addition to body geometry and weight distribution.
Moreover, non-rigid body properties often are relevant (elasticity, friction, reso-
nance frequencies. . .). In a competitive environment, failure to account for such
a property will be fatal when it determines a critical aspect of the overall system
performance. And, many factories are working on the edge of what is technically
feasible. The lumped model, with its ad hoc augmentations, is a flexible solution:
it can be elaborated in detail wherever it counts. A downside is the need for disci-
pline and standardization to avoid multiple representations for the same aspect.

Resources. The PROSA architecture explicitly acknowledges the fact that the
environment comprises a collection of resources, which have structure and ex-
plicit resource management. The explicit presence of and support for environ-
ment entities partitions a PROSA resource agent into an environment resource
entity accompanied by a pure resource agent. The resource entity reflects what
is present in the real world while the resource agent encapsulates all decision-
making aspects of the PROSA resource agent. Indeed, making the environment
entities ’choice-free’ (except for purely representational aspects) has important
integration advantages. When choice-free entities reflect some part of the real
world, there will be no serious conflict amongst them simply because they re-
flect a world that is coherent, consistent and integrated. Road maps are sample
choice-free artefacts: a map developer simply looks at reality to know what to
do. In contrast, developing a set of traffic regulations or a programming language
involves making a lot of (basically arbitrary) choices.

Ontology. The PROSA architecture partitions the agent community such that
they have a limited exposure to the overall system. As a consequence, there
is no need for a powerful comprehensive global ontology, known and agreed
upon by the entire MAS. In contrast, there will be a multitude of small agent
communities with a specialized local ontology covering their technical jargon;
for instance, only a few product agents and resource agents are involved in 5-
axes milling operations. The global ontology mostly covers invariant and generic
concepts such as time, space, ownership, etc.

The application domain imposes nonetheless severe demands on such a local
ontology concerning the life cycle of the ontology itself. It is imperative that
a local ontology can change at run-time (= normal operating mode). It must
be possible to add concepts and deprecate concepts as required by the applica-
tion. These changes often will be quick-and-dirty at first, requiring support for
cleaning up and restructuring at some later time.

The current manufacturing control prototypes do not explicitly support on-
tologies. An environment for MAS, providing such support, will make such manu-
facturing control MAS a much more open community. For instance, a third-party
product agent will be able to assess what the processing capabilities of the man-
ufacturing resources are without the need for a mapping between the capabilities
representation of a resource agent and the capabilities representation used by
this product agent. Notice that at such an encounter, the local ontologies of the
respective parties need to be reconciled and/or merged [12].

214 P. Valckenaers and T. Holvoet

4.2 Activity-Related Features

Communication. The manufacturing control system employs two modes of com-
munication. In a first mode, the agents know the other agents’ address and send
messages directly. There are two main methods to acquire the address of other
agents. First, when one agent creates another (ant) agent, they mutually know
each other’s address. Second, the agents can deposit and retrieve addresses on
the lumped graph model supported by the environment.

The second communication mechanism is stigmergy [3]. All nodes in the
lumped graph model posses an information space on which information can be
placed, observed and modified. By default, this information evaporates and needs
to be refreshed if it is to remain available. Some parts of these information spaces
are only observable and modifiable through the responsible local environment
entity (or agent?). For instance, resources have a ’reservation register’ in which
visitors cannot write themselves. Note that also reservations evaporate. More-
over, agent sub-societies can obtain a unique identifier to ensure that they have
their own sub-space of information spread over the environment. Access control
is an issue that remains to be investigated.

There is no explicit support (or usage) of shared/distributed spaces or sub-
scribe/distribute services in the current implementations. Adding those does
however not pose any problem (there is no conflict with the other mechanisms).

Action Processing. The manufacturing control system triggers actions in the un-
derlying production system and observes the outcome. In this context, the MAS
environment must regulate and support the link to the real world in a system-
atic manner. In addition, the application domain has a requirement for being
able to control an emulated world without requiring modifications to the MAS
manufacturing control system (in addition to controlling the real world system).
Furthermore, at the level of a single (lumped) node, there is a requirement for
a ’what-if self-modeling’ capability. For instance, a conveyor belt (a resource)
should provide estimates on how long it will take a part to be transported from
its entry to its exit.

In other words, the manufacturing control application domain is able to ben-
efit from a MAS environment and environment entities that systematize this
aspect of the overall system. Again, a key criterion for putting functionality in
the environment entities versus the agents should be whether the functionality
requires decision-making (choice). If not, it is a candidate for becoming part of
the MAS environment.

Perception and Actuation. Concerning this aspect, the application domain
presents a specific issue: to maintain the consistency between the lumped graph
model - in which each node is enriched with capabilities, attributes and function-
alities as required - and the real world. This is far from trivial because sensors and
actuators often are very expensive and/or unreliable. As a consequence, there
will be relevant aspects of the manufacturing system that cannot be observed
directly and actuators that cannot guarantee specific outcomes. For instance,
the system may not be able to observe whether an operator manually changes

The Environment: An Essential Abstraction for Managing Complexity 215

the sequence of pallets/parts on a conveyor belt. This creates uncertainty for the
control system, which can be challenging.

Functionality in the environment that alleviates this problem is certainly
valuable. Raising the intelligence in the manufacturing control system to the
point where probability representation formats are common knowledge might
be necessary to get adequate solutions in this area. This is definitely an open
research issue where it is even hard to judge how much can be achieved.

Environmental Processes. There is a strong relationship with the previous topic.
In practice, modeling and predicting what the system state will be compensates
for the limited availability of sensors. For instance, a conveyor belt only senses
arrival and departure of parts on top of it. It must calculate the position of these
parts based on its speed setting. As stated before, when an operator changes
the position or, worse, the sequence of the parts on top of the conveyor belt
without informing the system, a disaster may happen. The environment cannot
assume that this calculated system state information is correct and need to
correct/merge with new sensor readings as they emerge, even if they conflict
with the expectations. Likewise, contradictory sensor readings are part of normal
life in industry and need to be handled. Again, there is a real research challenge
but without an obvious solution at present.

4.3 Other Issues

The MAS manufacturing control systems present a number of additional issues,
which do not directly fit the list of features presented in [10]. These include:

1. Support for agent sub-societies and agent teams.
2. Support for social control, ensuring that agents obey a given set of rules.
3. Register past behavior and estimate what constitutes normal performance

and behavior.
4. Support for agent accreditation, agent reputations.

This list is evidently non-exhaustive. In particular, the environment may be able
to support making a MAS more autonomic by helping to identify and detect
abnormal situations and behavior, to diagnose what the possible sources are,
and to facilitate directed action against the cause of the problem.

Also, note that in stigmergic designs, like the MAS manufacturing control
systems, the environment and the agents are likely to interact and cooperate in
specific patterns in which information flows from the environment through the
agents and vice versa.

For instance, an agent may propagate its near-future resource requirements
in the environment; a unique identifier marks this information. The environ-
ment propagates this information to agents currently owning (some of) these
resources. These agents propagate this information in turn. When at some point
the information reaches its origin again, an indication of an impending deadlock
possibility becomes apparent. Clearly, such a scheme needs further detailing and
needs to be accompanied by a similar scheme to discourage agents from entering

216 P. Valckenaers and T. Holvoet

a cycle that is approaching a deadlock situation. The main point is that the
environment entities are unlikely to provide almost all useful functionality on
their own. Many kinds of useful functionality require a choreography involving
both agents and environment entities.

5 Conclusions

This paper illuminates the aspects of an environment for multi-agent systems
that are directly relevant for a class of manufacturing control systems using
stigmergy. The initial list of environment features proposed in [10] serves as a
guidance to identify which environment entities and functionality represents a
valuable contribution to the application domain. The confrontation reveals that
explicitly recognizing the different responsibilities that can be attributed to the
environment allows to better manage functionalities of MAS systems that were
otherwise scattered in the agents, the underlying execution platform, the com-
munication infrastructure, and so on. In particular, the environment facilitates
the development of subsystems by different parties and supports managing to a
large extent the application domain’s complexity.

The paper identifies some aspects outside the initial list of features (as un-
derstood by the authors), which cover concerns about the agent societies and
about functionality that requires an interaction pattern between agents and en-
vironment entities. Nonetheless, the analysis in this paper clearly supports the
usefulness of considering the environment as a first-class entity with well-defined
responsibilities.

Acknowledgements

This work was supported by the K.U.Leuven research council (GOA-AgCo2).

References

1. Van brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference
architecture for holonic manufacturing systems: Prosa. COMPUTERS IN INDUS-
TRY 37(3) (1998) 255 – 274

2. Valckenaers, P., Saint Germain, B., Verstraete, P., Hadeli, Zamfirescu, C.,
Van Brussel, H.: Ant colony engineering in coordination and control: How to
engineer an emergent short-term forecasting system. In: Proceedings IWES2004,
Budapest. (May 24-25, 2004)

3. Grassé, P.P.: La reconstruction du nid et les coordinations interindividuelle chez
bellicositermes natalensis et cubitermes. la theorie de la stigmergie: Essai dinter-
pretation des termites constructeurs. Insectes Sociaux 6 (1959) 4183

4. Valckenaers, P., Van brussel, H., Hadeli, Bochmann, O., Saint germain, B., Zam-
firescu, C.: On the design of emergent systems: an investigation of integration
and interoperability issues. ENGINEERING APPLICATIONS OF ARTIFICIAL
INTELLIGENCE 16(4) (2003) 377 – 393

The Environment: An Essential Abstraction for Managing Complexity 217

5. Bussmann, S., Sieverding, J.: Holonic control of an engine assembly plant, an indus-
trial evaluation. In: Proceedings of the 2001 IEEE Systems, Man, and Cybernetics
Conference. (2001) 169 – 174

6. Bussmann, S., Schild, K.: An agent-based approach to the control of flexible pro-
duction systems. In: Proceedings of the 8th IEEE Intern. Conf. on Emergent
Technologies and Factory Automation. (2001) 481–488

7. Parunak, H., Baker, A., Clark, S.: The aaria agent architecture: From manufac-
turing requirements to agent-based system design. INTEGRATED COMPUTER-
AIDED ENGINEERING 8(1) (2001) 45 – 58

8. Brueckner, S.: Return from the Ant - Synthetic Ecosystems for Manufacturing
Control. PhD thesis, Humboldt University, Berlin (2000)

9. Mueller, J.P., Parunak, H.: Multi-agent systems and manufacturing. In: Proceed-
ings of INCOM98, IFAC. (1998) 165–170

10. Weyns, D., Holvoet, T.: On environments in multi-agent systems. AgentLink News
16 (December 2004) 18–19

11. Weyns, D., Parunak, H., Michel, F., Holvoet, T., Ferber, J.: Environments for
multiagent systems state-of-the-art and research challenges. ENVIRONMENTS
FOR MULTI-AGENT SYSTEMS 3374 (2005) 1 – 47

12. Carpenter, M., Gledson, A., Mehandjiev, N.: Support for dynamic ontologies in
open business systems. In: Proceedings of the AAMAS’04 Agent-Oriented Infor-
mation Systems Workshop. (2004)

Exploiting a Virtual Environment in a Real-World
Application

Danny Weyns, Kurt Schelfthout, and Tom Holvoet

AgentWise, DistriNet,
Department of Computer Science, K.U. Leuven,
Celestijnenlaan 200 A, B-3001 Leuven, Belgium

{Danny.Weyns, Kurt.Schelfthout, Tom.Holvoet}@cs.kuleuven.be

Abstract. In situated multi-agent systems (situated MASs), agents are explicitly
placed in an environment. A situated agent does not not use long-term planning
to decide what action sequence should be executed, but selects actions on the
basis of its current position, the world it perceives and limited internal state. Sit-
uated agents exploit the environment to coordinate their behavior and to reach a
common goal. In a recent project, we applied situated MASs to the control of an
automated transportation system that uses automatic guided vehicles (AGVs) to
transport loads in a warehouse. In contrast to traditional approaches where the
AGVs are controlled by a central server, in this project we model the AGVs as
agents in a situated MAS, aiming to improve flexibility and openness. Since the
physical environment of AGVs is very restricted, it offers little opportunities for
agents to use the environment. We introduce a virtual environment for agents to
live in. This virtual environment (1) offers a medium that agents can use to ex-
change information and coordinate their behavior, and (2) serves as a suitable
abstraction to shield low-level physical processing from the AGV agents. Since
the only infrastructure available to the AGVs is a wireless network, the virtual en-
vironment is necessarily distributed over the AGVs. Synchronization of the state
of the virtual environment is provided by ObjectPlaces, a middleware infrastruc-
ture that offers support to exchange and share information among nodes in mobile
and ad-hoc networks. In this paper, we demonstrate how the environment is used
creatively in the design of a MAS solution, helping to manage the complexity of
engineering a complex real-world application.

1 Introduction

In the last fifteen years, multi-agent systems (MASs) have been put forward as a
paradigm to tackle the increasing complexity of distributed applications. Our research
focusses on situated MASs, i.e. MASs in which agents are explicitly placed in an en-
vironment. In situated MASs, agents and the environment are first-order abstractions
[15]. Situated agents exploit the environment to coordinate their behavior and to reach
a common goal. Example mechanisms for environmental coordination are marks [4],
gradient fields [6] and digital pheromones [10].

In [16], M. Wooldridge lists benefits of situated MAS including efficiency, robust-
ness and flexibility, but he also points to a number of limitations of situated MASs.

D. Weyns, H. Van Dyke Parunak, and F. Michel (Eds.): E4MAS 2005, LNAI 3830, pp. 218–234, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Exploiting a Virtual Environment in a Real-World Application 219

Wooldridge argues that situated agents take into account only local, current informa-
tion and thus inherently must take a “short-time” view for decision making. However,
complex problem domains suitable to apply agent-technology, such as ad-hoc networks
or manufacturing control, are by their very nature distributed and highly dynamic. In
such domains it is questionable whether it is feasible or even useful for agents to collect
global information or have a “long-term” view on the situation. Another problem raised
by Wooldridge is that there is no methodology to engineer situated agents, in particular
with respect to desired overall behavior of the system. The relationship between local
interactions of agents on the one hand and global behavior of the MAS on the other hand
is indeed a complex open problem in need of extensive further research. An interesting
approach is proposed in [3].

Situated MASs have been applied with success in practical applications over a broad
range of domains. Some examples are: manufacturing control [9], supply chains sys-
tems [12], social simulation [5] and network management [1]. In an ongoing R&D
project with Egemin1, we apply the paradigm of situated MASs to the control of auto-
matic guided vehicles (AGVs) that have to transport loads in a warehouse. In contrast
to traditional approaches where the AGVs are controlled by a central server, in this
project we model the AGVs as agents in a situated MAS, aiming to improve flexibility
and openness. Flexibility refers to a system’s capability to adapt its behavior with dif-
ferent environmental situations, and openness enables a system to cope with expansion
(new agents that join the system) and reduction (agents that leave the system). Since
the physical environment of AGVs is very restricted, it offers little opportunities for
agents to use the environment. We introduce a virtual environment for agents to live
in. This virtual environment (1) offers a medium that AGV agents can use to exchange
information and coordinate their behavior, and (2) serves as a suitable abstraction to
shield low-level physical processing from the AGV agents. Since the only infrastruc-
ture available to the AGVs is a wireless network, the virtual environment is necessarily
distributed over the AGVs. Synchronization of the state of the virtual environment is
provided by ObjectPlaces, a middleware infrastructure that offers support to exchange
and share information among nodes in mobile and ad-hoc networks. In this paper, we
demonstrate how the environment is used creatively in the design of a MAS solution,
helping to manage the complexity of engineering a complex real-world application.

This paper is structured as follows. In Sect. 2, we elaborate on situated MASs, and
we discuss opportunities that environments offer for situated MASs. Section 3 intro-
duces the AGV application. We discuss the traditional centralized solution briefly, and
then explain how we have modelled this application as a situated MAS. In Sect. 4, we
zoom in on the virtual environment and illustrate how AGV agents exploit this environ-
ment to coordinate their behavior. Finally, in Sect. 5 we draw conclusions.

2 Situated MASs and Environments

2.1 Situated MASs

A situated MAS consists of a (distributed) environment populated with a set of agents
that cooperate to solve a complex problem in a decentralized way. Situated agents have

1 http://www.egemin.com/

220 D. Weyns, K. Schelfthout, and T. Holvoet

local access to the environment, i.e. each agent is placed in a local context which it can
perceive and in which it can act and interact with other agents. A situated agent does not
use long-term planning to decide what action sequence should be executed, but selects
actions on the basis of its current position, the state of the world it perceives and limited
internal state. Intelligence in a situated MAS originates from the interactions between
the agents, rather than from their individual capabilities.

Situated agents exploit the environment to share information and coordinate their
actions. A digital pheromone, for example, is a dynamic structure in the environment
that aggregates with additional pheromone that is dropped, diffuses in space and evap-
orates over time. Agents can use pheromones to dynamically form pheromone paths to
locations of interest. Another example is a gradient field that propagates through the
environment and changes in strength the further it is propagated. Agents can use a gra-
dient field as a guiding beacon. The environment is thus a crucial part of any situated
MAS: both agent and environment are first-order abstractions.

2.2 Opportunities for Exploiting the Environment

Inspired by research and our own experiences with situated MAS, we discuss opportu-
nities that environments offer for MASs [15].

1. Structuring entity: the agents as well as the objects and resources of a MAS are dy-
namically related to each other. It is the role of the environment to define the rules
under which these relationships can exist and can evolve. As such the environment
acts as a structuring entity for the MAS. For MASs with an explicit spatial struc-
ture, the layout as well as the constraints associated with this layout are part of the
environment.

2. Maintenance of shared state: an environment can serve as a robust, self-revising,
shared memory for agents. This unburdens the individual agents from continuously
keeping track of their knowledge about the system. The state of digital pheromones
is an example of shared state that is maintained by the environment.

3. Service support: the environment can provide services for the situated agents to
pursue their assigned goals. For example, the environment can provide support to
propagate and maintain gradient fields in a distributed environment.

4. Coordination: the environment enables situated agents to coordinate their interac-
tions. Communication required to coordinate can take very different forms: agents
can communicate directly via message transfer, or communicate anonymously via
a shared space, or communicate indirectly through marks in the environment.

5. Regulating entity: the environment can serve as a means to enforce system-wide
constraints (laws) on all agents within a MAS. The environment, e.g., regulates the
access to resources. In general, the environment defines the rules for, and enforces
the effects of, the agents’ actions.

3 The AGV Transportation System

We apply the approach of situated MASs to a real-world application in the domain of
automating logistics services in warehouses and manufactories. This application is in-
vestigated in a joint R&D research project between the AgentWise research group and

Exploiting a Virtual Environment in a Real-World Application 221

Egemin, a manufacturer of automated warehouse systems. In this section, we first in-
troduce the application and list the required functionalities. We discuss the traditional
centralized solution briefly. Next, we discuss new quality requirements for the appli-
cation and we give a high-level overview of the decentralized solution with a situated
MAS. We introduce the virtual environment and illustrate how AGV agents exploit this
environment to coordinate their behavior. In the next section, we explain the virtual
environment in depth.

3.1 The AGV Application

An AGV transportation system uses unmanned vehicles (AGVs) to transport loads
through a warehouse. Typical applications are repackaging and distributing incoming
goods to various branches, or distributing manufactured products to storage locations.
An AGV uses a battery as its energy source. AGVs can move through a warehouse,
following a physical path on the factory floor, guided by a laser navigation system, or
by magnets or cables that are fixed in the floor. An AGV can pick a load at a certain
location and drop it at another location. An AGV can also park at particular locations
when it is idle, and charge its battery at a charging station.

Functionalities. The main functionality the system should perform is handling trans-
ports, i.e. moving loads from one place to another. Transports are generated by client
systems. Client systems are typically business management programs, but can also be
other logistic machines, employees or service operators. A transport is composed out
of multiple jobs: a job is a simple task that can be assigned to an AGV. For example,
picking a load is a pick job, dropping it is a drop job and moving over a specific distance
is a move job. A transport typically starts with a pick job, followed by a series of move
jobs (probably interrupted by one or more wait jobs) and ends with a drop job.

In order to execute transports, the main functionalities the system has to perform are:

1. Transport assignment: transports are generated by client systems and have to be
assigned to AGVs that can execute them.

2. Routing: AGVs must route efficiently through the layout of the warehouse when
executing their transports.

3. Gathering traffic information: although the layout of the system is static, the best
route for the AGVs in general is dynamic, and depends on the current conditions
in the system. For example, some paths may be busy and cause more delay than a
longer path that is not busy. Gathering traffic information concerns the monitoring
of the current traffic status of the system to adapt the routing of the AGVs to these
dynamic conditions.

4. Collision avoidance: obviously, AGVs may not collide. AGVs can not cross the
same intersection at the same moment, however, safety measures are also necessary
when AGVs pass each other on closely located paths.

5. Deadlock prevention: since AGVs are relatively constrained in their movement
(they cannot divert from their path), the system must ensure that at least one of
the necessary conditions for deadlock can never hold.

When an AGV is idle it can park at a neighboring park location; when the AGV
runs out of energy, it has to charge its battery at one of the charging stations.

222 D. Weyns, K. Schelfthout, and T. Holvoet

3.2 Traditional Approach

Traditionally, vehicles are controlled by one central server, using wireless communi-
cation. The server has global knowledge of the system and plans routes for AGVs
according to incoming transports and instructs AGVs to perform the jobs. The server
continuously polls the AGVs about their status. The low-level control of the AGVs, in
terms of actuators, sensors, etc., is handled by the AGV control software called E’nsor2.
To this end, the layout of the factory is divided into logical elements: segments and
nodes. A logical segment typically corresponds to a physical part of a path of three to
five meters. E’nsor is able to steer the AGV per segment, and the AGV can stop on
every node, possibly to change direction. E’nsor understands five basic actions:

• Move(segment): instructs E’nsor to drive the AGV over the given segment. Each
segment and node is identified by a unique identifier.

• Pick(segment): instructs E’nsor to drive the AGV over the given segment and to
pick the load at the end of it.

• Drop(segment): the same as pick, but drops a load the AGV is carrying.
• Park(segment): instructs E’nsor to drive the AGV over the given segment and to

park at the end of the segment.
• Charge(segment): instructs E’nsor to drive the AGV over a given segment to a

battery charge station and start charging batteries there.

The physical execution of these actions, such as staying on track on a segment,
turning, and manipulation of loads are handled by E’nsor. Reading out specific sen-
sor data, such as the current position and the battery level is also provided by E’nsor.
When the transport is finished, the server reports the completion of the transport to the
corresponding client system.

New Quality Requirements for AGV Transportation Systems. The centralized approach
has successfully been applied in numerous practical systems. The main quality proper-
ties of the traditional approach are efficiency, configurability and predictability. How-
ever, the evolution of the market put forward new requirements for AGV transportation
systems.

First, customers request for flexibility of the transportation systems, AGVs should
adapt their behavior with changing circumstances. In particular, AGVs should be able
to exploit opportunities, e.g., when an AGV is assigned a transport and moves toward
the load, it should be possible for this AGV to switch tasks along the way if a more
interesting transport pops up. AGVs should also be able to anticipate possible difficul-
ties, e.g., when the battery level of the AGV decreases, the AGV should prefer a zone
close to a charge station. Another desired property is that AGVs should be able to cope
with particular situations, e.g., when a truck with loads arrives at the factory, the system
should be able to reorganize smoothly.

Second, customers expect that the AGV transportation system is open, i.e., the sys-
tem should be able to deal with leaving AGVs, or new AGVs entering the system. One
example is maintenance. Currently, maintenance of AGVs is based on fixed worst-case

2 E’nsor R© is an acronym for Egemin Navigation System On Robot.

Exploiting a Virtual Environment in a Real-World Application 223

rules. However, the time an AGV should go into maintenance depends on the number
of movements (turns, picks, drops, . . .) the AGV has executed. Since this information
can be locally collected on each AGV, it is more precise (and efficient) to allow each
AGV to decide individually whether to go into maintenance or not. AGVs can then
leave and enter the system at arbitrary moments. As another example of openness, some
customers want to interact with the AGVs on the factory floor, by directly assigning a
job to a particular AGV.

In summary, flexibility and openness are high-ranking quality requirements for to-
day’s AGV transportation systems.

3.3 A Decentralized Solution with a Situated MAS

The general idea of the decentralized approach is to put more autonomy in the AGVs
allowing for improved flexibility and openness. In the decentralized solution, vehicles
become autonomous agents which make decisions based on their current situation, and
who coordinate with other agents to ensure the system as a whole processes transports.

Decentralized control of automated warehouse transportation systems is an active
area of research. In [7], Ong gives an extensive overview of decentralized agent-based
manufacturing control and compares the pros and cons of centralized versus decentral-
ized control. According to Ong, the advantages of decentralized control are: (1) it is
more economical w.r.t. required processing power, and (2) it is more reliable. Disad-
vantages of decentralization are: (1) performance of the system may be affected by the
communication links between nodes, (2) while the distributed approach is designed to
cope with disturbances, there is, in general, a trade-off between its performance and
the reactivity of the system to disturbances, and (3) myopic decision may occur due to
the lack of global information. Examples of other recent decentralized approaches are
[8] that discusses a decentralized cognitive planning approach for collision-free move-
ments of vehicles, and [2] that discusses a behavior-based approach for decentralized
control of automatic guided vehicles. However, both approaches are validated only in
simulations under a number of simplifying assumptions. In general, applications of de-
centralized control of automated transportation systems in real industrial settings are
rarely discussed in literature.

Besides the advantages of decentralization listed by Ong, we believe that in princi-
ple, a MAS-based AGV transportation system also becomes more flexible. Since each
AGV acts locally, it can better exploit opportunities and adapt its behavior under chang-
ing circumstances. On the other hand, the benefits of a decentralized approach do not
come for free. Since an all knowing entity in the system does not exist, inter-AGV coor-
dination becomes complex. Bandwidth must be considered carefully to ensure that the
communication network does not become a bottleneck. Another important consequence
of decentralization, not mentioned by Ong, is an increased complexity of debugging.

The general challenge in the project is to support the current functionality, while
aiming to improve flexibility and openness, and keeping in mind the benefits of the
centralized approach. So far, we have implemented AGV routing, information sharing
and collision avoidance. We have validated the solution in a test setup with two physical
AGVs, and in a number of advanced simulation cases with up to six AGVs. Many
challenges lie ahead. Currently, we are developing architectural models to cope with

224 D. Weyns, K. Schelfthout, and T. Holvoet

order assignment and deadlock prevention. Only when these models are implemented
and tested, we can start the validation of the integral solution in an advanced setup.

High-Level Model of the Situated MAS. The situated MAS consists of two kinds
of agents, transport agents and AGV agents. Transport agents are located at transport
bases. AGV agents are located in AGVs that are situated on the factory floor. Figure 1
depicts a high-level model of the situated MAS with one transport base and two AGVs.
A transport agent represents a transport that needs to be handled by an AGV. AGV

Fig. 1. High-level model of the AGV transportation system

agents are responsible for executing the assigned transports. We fully reused the E’nsor
software that deals with the low-level control of the AGVs. As such, the AGV agents
control the movement and actions of AGVs on a fairly high level. The communication
infrastructure provides a wired network that connects client systems and transport bases,
and a wireless network that enables mobile AGVs to communicate with each other and
with transport agents on transport bases.

AGVs are situated in a physical environment, however, this environment is very
constrained: AGVs cannot manipulate the environment, except by picking and dropping
loads. This restricts how AGV agents can exploit their environment. We introduce a
virtual environment for agents to live in. This virtual environment offers a medium
that agents can use to exchange information and coordinate their behavior. Besides, the
virtual environment serves as a suitable abstraction that shields the AGV agents from
low-level issues, such as the physical control of the AGV.

In the AGV application, the only physical infrastructure available to the AGVs is
a wireless network for communication. In other words, the virtual environment is nec-
essarily distributed over the AGVs and transport bases. In effect, each AGV and each
transport base maintains a local virtual environment, which is a local manifestation of
the virtual environment. Local virtual environments are merged with other local virtual
environments opportunistically, as the need arises. In other words, the virtual environ-
ment as a software entity does not exist; rather, there are as many local virtual environ-
ments as there are AGVs and transport bases. Some of these local virtual environments

Exploiting a Virtual Environment in a Real-World Application 225

may recently be synchronized with each other, while others may not. From the agent
perspective, the virtual environment appears as one entity. The synchronization of the
state of neighboring local virtual environments is supported by the ObjectPlaces mid-
dleware [11]. We elaborate on state management in the virtual environment in Sect. 4.

Responsibilities of Agents and the Environment. To describe how we apply a situ-
ated MAS to control an AGV system, we revisit the five core functionalities of the AGV
application described in Sect. 3.1. We describe the main responsibilities of the two types
of agents in the MAS, as well as the responsibilities of the virtual environment.

Transport Assignment. As stated above, transports are represented by transport agents
that reside on transport bases. Transport bases receive transports from client systems.
For each new transport, a new transport agent is created that is responsible to assign
the transport to an AGV and to ensure that the transport is completed correctly. Each
transport has a priority that depends on the kind of transport, the pending time since its
creation, and the nature of other transports in the system. Therefore, transport agents
interact with other related transport agents to determine the correct priority over time.
Transport agents use the virtual environment to find AGV agents to assign the trans-
ports, and to follow the progress of the assigned transports. To assign a transport, the
transport agent negotiates with AGV agents of AGVs near to the pick location of the
load. Once the transport is assigned, the awarded AGV handles the transport. As soon
as the transport is completed, the AGV agent informs the transport agent, that in its
turn informs the client system after which the transport agent is removed. The transport
agent guarantees the persistence of the transport in the system. If for some reason the
assigned AGV is unable to complete the transport, the transport agent may negotiate
with other AGVs to reassign the order.

Routing. For routing purposes, the virtual environment has a static map of the paths
through the warehouse. This graph-like map corresponds to the layout used by E’nsor.
To allow agents to find their way through the warehouse efficiently, the virtual envi-
ronment provides signs on the map that the agents use to find their way to a given
destination. These signs can be compared to traffic signs by the road that provide direc-
tions to drivers. At each node in the map, a sign in the virtual environment represents
the cost to a given destination for each outgoing segment. The cost of the path is the
sum of the static costs of the segments in the path. The cost per segment is based on
the average time it takes for an AGV to drive over the segment. The agent perceives
the signs in its environment, and uses them to determine which segment it will take
next.

Gathering Traffic Information. Besides the static routing cost associated with each seg-
ment, the cost is also dependent on dynamic factors, such as congestion of a segment.
To warn other agents that certain paths are blocked or have a long waiting time, agents
mark segments with a dynamic cost on a traffic map in the virtual environment. Agents
mark the traffic map by dropping pheromones on the applicable segments. When AGVs
come in each others neighborhood, the information of the traffic maps is exchanged and
merged to provide up-to-date information to the AGV agents. Since pheromones evapo-
rate over time, outdated information automatically vanishes over time. AGV agents take

226 D. Weyns, K. Schelfthout, and T. Holvoet

the information on the traffic map into account when they decide how to drive through
the warehouse.

Collision Avoidance. AGV agents avoid collisions by coordinating with other agents
through the virtual environment. AGV agents mark the path they are going to drive
in their environment using hulls. The hull of an AGV is the physical area the AGV
occupies. A series of hulls then describes the physical area an AGV occupies along
a certain path. If the area is not marked by other hulls (the AGV’s own hulls do not
intersect with others), the AGV can move along and actually drive over the reserved
path. Afterwards, the AGV removes the markings in the virtual environment. We zoom
in on collision avoidance in Sect. 4.4.

Deadlock Prevention. The basic mechanisms for deadlock prevention provided in the
traditional approach can be adopted in the MAS approach. E.g., when an AGV ap-
proaches a bidirectional path in the layout, the AGV agent can lock that path via the
hull reservation mechanism, or when an AGV reaches an entry point of a critical area
where only a limited number of AGVs are allowed, the AGV agent can instruct the
AGV to wait there until the area is accessible. However, those rules only provide a par-
tial solution to avoid deadlock. Currently, we study two additional tracks to deal with
deadlock, one with a supervising MAS that monitors the AGV movements and provides
feedback to the AGV agents, and another where AGVs themselves monitor their neigh-
borhood and exchange information regarding deadlock threats via the environment.

4 A Virtual Environment for AGV Agents

This section describes the virtual environment in the AGV transportation application.
We focus on the virtual environment from the viewpoint of AGV agents. First we give a
broad overview of the structure of the virtual environment, in three parts. The first part
gives a brief overview of the high-level model of an AGV and situates the virtual en-
vironment in this model. The second part describes how the local virtual environment
synchronizes its state with other local virtual environments. The third part describes
how the virtual environment handles perception, action and communication. Conclud-
ing with an example, we describe how the virtual environment is exploited by the AGV
agents to avoid collisions.

4.1 High-Level Model of an AGV

Figure 2 depicts an overview of an AGV. The AGV agent is shown in the top layer of the
model. We do not elaborate on the architecture of the AGV agent; it is based on the ref-
erence architecture discussed in [13] and [14]. The AGV agent is situated in the virtual
environment, shown as a layer below the top layer. The virtual environment uses the
middleware layer, that is composed of a Message Transfer System, the ObjectPlaces
middleware [11] (both discussed later) and E’nsor. The operating system is located
below the middleware. Finally, the bottom layer represents the physical infrastructure
of the AGV, including a processor, communication infrastructure, actuators and sen-
sors. We further elaborate on the virtual environment and the supporting middleware
hereafter.

Exploiting a Virtual Environment in a Real-World Application 227

Fig. 2. High-level model of an AGV

4.2 Managing State in the Virtual Environment

Since the virtual environment is necessarily distributed over the AGVs and transport
bases, each local virtual environment is responsible to keep its state synchronized with
other local virtual environments. The state of the local virtual environment on an AGV
is divided into three categories:

1. Static state: this is state that does not change over time. A typical example is the
layout of the factory floor, which is needed for the AGV to navigate. Static state
must never be exchanged between local virtual environments, since it is common
knowledge and never changes.

2. Observable state: this is state that can be changed in one local virtual environment,
while other local virtual environments can only observe the state. An AGV typically
obtains this kind of state from its sensors directly. An example is an AGV’s position.
Local virtual environments are able to observe another AGV’s position, but only
the local virtual environment on the AGV itself is able to read it from its sensor,
and change the representation of the position in the local virtual environment. No

228 D. Weyns, K. Schelfthout, and T. Holvoet

conflict ever arises between two local virtual environments concerning the update
of observable state.

3. Shared state: this is state that can be modified in two local virtual environments
concurrently. So, two or more local virtual environments can conflict on what is the
“right” state. The traffic map, containing dynamic costs associated with segments,
is an example of shared state. Several AGV agents can modify the cost on the
same segment concurrently. When the local virtual environments on these AGVs
synchronize, costs of the local virtual environments’ traffic maps are mutually ex-
changed and conflicts are resolved to generate an up-to-date traffic map in both
local virtual environments.

In order to manage and maintain this state, the local virtual environment performs
three basic activities. We describe each of these in turn.

The first activity is synchronizing the state of the local virtual environment with the
AGV’s sensors. The local virtual environment uses E’nsor to regularly poll the vehi-
cles’s current status and adjust its own state appropriately. For example, if the AGV’s
position has changed, the AGV position in the local virtual environment is updated.

The second activity the virtual environment performs is synchronizing the state of
the local virtual environment with other AGVs. This is supported by the ObjectPlaces
middleware. ObjectPlaces offers high-level abstractions to deal with communication in
mobile and ad hoc networks. The local virtual environment uses the middleware by
sharing objects in a tuplespace-like container, called an objectplace. Every AGV has
one objectplace locally available. Objects in objectplaces on remote AGVs can be gath-
ered using a view. The local virtual environment can define a view by (1) specifying
which AGVs’ objectplaces need to be included in the view (e.g. the objectplaces of
all AGVs within a specific range), and (2) specifying what objects need to be included
in the view (e.g. hull objects). Based on these specifications, the ObjectPlaces mid-
dleware then builds a local collection of objects reflecting the current contents of the
remote objectplaces. In other words, a local virtual environment shares data with other
AGVs by putting objects in the local virtual environment’s objectplace. Local virtual
environments gather data from other AGVs by defining a view on the objectplaces of
those AGVs. For example, when an AGV agent marks a hull in the environment, this
hull is published in the local virtual environment’s objectplace. When the AGV agent
wants to perceive hulls in its vicinity, the local virtual environment defines a view on all
hull objects in objectplaces of AGVs within a certain physical distance from the AGV.
The middleware then gathers the hull objects from the objectplaces on the appropriate
AGVs. The local virtual environment can then use the hull objects to determine whether
the requested path is free or not and return this results to the agent.

The third and last activity is maintaining the state of the virtual environment lo-
cally. This is done by maintenance processes in the local virtual environment itself. An
example is the maintenance of pheromones. A change of local state possibly triggers
an update of state in the local virtual environment’s objectplaces, so that other virtual
environments can synchronize with the new state.

In summary, the virtual environment deals with the management of state in the dis-
tributed system, hiding many aspects of distribution from the AGV agent. Agents can

Exploiting a Virtual Environment in a Real-World Application 229

act and perceive in the local virtual environment, which in turn contacts local environ-
ments on other AGVs to synchronize state.

4.3 Perceiving, Acting and Communicating

The virtual environment offers abilities for perception, action and communication to the
AGV agent, shielding low-level details from the agent.

Perception is handled by the perception manager. The perception manager’s task is
straightforward: when the agent requests a percept, for example the current positions of
neighboring AGVs, the perception manager queries the necessary information from the
local virtual environment and returns it to the agent.

Actions are handled by the action manager. A first kind of actions concerns the phys-
ical actions of the AGV, for example moving over a segment or picking a load. These
actions are handled fairly easily by passing them on to the E’nsor control software. A
second kind of actions does not actually have an effect on the behavior of the AGV,
but manipulates the virtual environment. Marking hulls is one example of this, which is
described in detail in Sect. 4.4. Another is dropping a virtual pheromone. In general, an
action can be handled by passing it down to Ensor, and/or by changing the local virtual
environment which in turn may change the content of the objectplace.

Communication is handled by the communication manager. Agents can communicate
directly with other agents through the virtual environment. A typical example is an
AGV agent that communicates with a transport agent. Another example is an AGV
agent that requests the AGV agent of a waiting AGV to move out of the way. The
virtual environment is responsible for translating high level messages to messages that
can be sent through the network (resolving agent names to IP numbers for example).
For this, it uses the message transfer system in the middleware layer.

In summary, the virtual environment offers high level primitives to the AGV agent
to act in the world, perceive the world, and communicate with other agents. The virtual
environment shields the agent from having to deal with lower level issues.

4.4 A Specific Scenario: Collision Avoidance

We now describe a specific scenario, to illustrate how collision avoidance works. In
the centralized approach, collision avoidance is realized as follows: for each AGV in
the system, a series of hulls are calculated along the path each AGV is going to drive.
When two or more such hull projections overlap, AGVs are on a collision course and
all except one AGV are commanded to wait.

In a decentralized architecture, a central arbitrator does not exist. However, the vir-
tual environment enables the agents to act as if they are situated in a shared environment,
while the virtual environment takes on the burden of coordination. Figure 3 shows a se-
ries of screenshots of a simulation run in a realistic map. In Fig. 3(a), two AGVs are
approaching one another. We call the AGV approaching from the top AGV A, and the
other AGV B. Both are projecting hulls in the environment. At this point, no conflict is

230 D. Weyns, K. Schelfthout, and T. Holvoet

(a) (b)

(c) (d)

Fig. 3. (a) Two AGVs approaching, (b) A conflict is detected, (c) One AGV passes safely, (d) The
second AGV can pass as well

detected. In Fig. 3(b), AGV B has projected further ahead, and is now in conflict with
the hull projection of AGV A. However, since AGV A’s hull projection was already
locked, AGV B must wait. In Fig. 3(c), AGV A is taking the curve, passing AGV B.
Finally, in Fig. 3(d), AGV A has parked at the bottom, and AGV B can start moving.

We now describe the collision avoidance mechanism in more detail. First, we focus
on how the agent avoids collision without being aware of the actual underlying collision
avoidance protocol, then we study the work behind the scenes (i.e. the protocol) in the
virtual environment.

In order to drive, the agent takes the following actions:
1. The agent determines the path it intends to follow over the layout. The agent deter-

mines how much of this path it wants to lock. This is determined by a safe stopping
distance on the one hand, and the application of basic rules for deadlock avoid-
ance on the other hand. As an example of the latter, if the AGV tries to lock a bi-
directional path, it must lock that path until the end, since otherwise another AGV
might enter it from the other direction, leading directly to a deadlock situation.

2. The agent marks the path it intends to drive with a requested hull projection. This
projection contains the agents id and a priority, that depends on the current transport
the AGV is handling.

Exploiting a Virtual Environment in a Real-World Application 231

3. The agent perceives the environment to observe the result of its action.
4. The agent examines the perceived result. There are two possibilities:

(a) The hull is marked as “locked” in the environment; it is safe to drive.
(b) The hull is not marked as locked. This means that the agent’s hull projection

conflicted with that of another agent. The agent may not pass; at this point
the agent may decide to wait and look again at a later time, or remove its hull
projection and take another path altogether.

The virtual environment plays an important role in this coordination approach: it
must make sure that a hull projection becomes locked eventually. To this end, the local
virtual environment of the AGV agent that requests a new hull projection, executes a
collision avoidance protocol with local virtual environments of nearby AGVs.

It is desirable to make the set of nearby AGVs not larger than necessary, since it is
not scalable to interact with every AGV in the system. On the other hand, the set must
include all AGVs with which a collision is possible: safety must be guaranteed.

Fig. 4. Determining nearby AGVs

A solution to this problem is shown in Fig. 4. The local virtual environment of a
requesting AGV will interact with the local virtual environments of other AGVs whose
hull projection circle overlaps with the hull projection of the requesting AGV. The hull
projection circle is defined by a center point, which is the position of the AGV itself,
and a radius, which is equal to the distance from the AGV to the furthest point on its
hull projection. If two such circles overlap, this indicates (to a first approximation) that
the two AGVs might collide. We call the set of AGVs with overlapping hull projection
circles the requested AGVs.

The local virtual environment of the requesting AGV executes the following proto-
col with the local virtual environment’s of requested AGVs. The protocol is a variant
on well-known mutual exclusion protocols based on voting.

1. The local virtual environment of the requesting AGV sends the requested hull
projection to the local environments of all requested AGVs.

232 D. Weyns, K. Schelfthout, and T. Holvoet

2. The local environments of requested AGVs check whether the projection overlaps
with their hull projection. There are three possibilities for each of the requested
AGVs:
(a) No hull projections overlap. The local virtual environment of the requested

AGV sends an “allowed” message to the local virtual environment of the re-
questing AGV.

(b) The requesting AGV’s hull projection overlaps with the requested AGV’s hull
projection, and the requested AGV’s hull is already locked. The local virtual
environment of the requested AGV sends a “forbidden” message to the local
virtual environment of the requesting AGV.

(c) The requesting AGV’s hull projection overlaps with the requested AGV’s hull
projection, and the requested AGV’s hull is not locked. Since each of the re-
quested hulls contains a priority, the local virtual environment of the requested
AGV can check which hull projection has precedence. If the hull projection of
the requesting AGV has a higher priority than that of the requested AGV, the
local virtual environment of the requested AGV replies “allowed”; it replies
“forbidden” otherwise.

3. The local virtual environment of the requesting AGV waits for all “votes” to come
in. If all local virtual environments of the requested AGVs have voted “allowed”,
the hull projection can be locked and the local virtual environment is updated. If
not, the local virtual environment of the requesting AGV waits a random amount
of time and then tries again from step 1.

If at any time, the agent removes the requested hull from the virtual environment,
the protocol is aborted.

In this scenario, the virtual environment serves as a flexible coordination medium,
which hides much of the distribution of the system from the agents: agents coordinate
by putting marks in the environment, and observing marks from other agents.

5 Conclusions

Situated agents exploit the environment to coordinate their behavior and reach their
goals. Research in this area almost invariably assumes the existence of an exploitable
environment a priori that is accessible for all agents, either by centralizing or by pro-
viding infrastructural support especially for environments. A possible critique on this
research is that it takes the access to the environment as a common shared entity for
granted, whereas the absence of such an entity is the essence of many multi-agent based
systems. On the contrary, we have shown that an environment does not need to be a
common shared entity to be useful. We introduced the concept of virtual environment,
a decentralized entity in an application where a centralized approach is undesirable and
no shared infrastructure is available to deploy an environment as a common accessible
entity. We also showed that offering an observable and moldable environment to agents
living in a constrained physical environment, strengthens the MAS approach instead of
diluting it. The virtual environment is a first-order abstraction in the designed solution
of the AGV transportation application.

Exploiting a Virtual Environment in a Real-World Application 233

So far, we have implemented AGV routing, information sharing and collision avoid-
ance. We have validated the solution in a test setup with two physical AGVs, and in a
number of advanced simulation cases. The next challenges are order assignment and
deadlock avoidance. With respect to order assignment we study two different tracks,
one with an adaptive version of the Contract-Net protocol and one with a gradient field
based approach. In this latter approach, each transport agent emits a gradient field in
the virtual environment that attracts interested AGVs to the pick location of the load,
while each interested AGV emits a gradient field that repels other competitor AGVs.
The gradient fields guide idle AGVs toward the most appropriate transports, ensuring
maximal flexibility (e.g., AGVs take into account opportunities –new transports that
pop up– when they drive toward a load). To deal with deadlock, we also follow two
possible approaches, one with a supervising MAS that monitors the AGV movements
and provides feedback to the AGV agents, and another where AGVs themselves mon-
itor their neighborhood and exchange information regarding deadlock threats via the
virtual environment.

We are convinced that exploiting the environment in our ongoing AGV research
case is an asset, and will continue our validation of situated MAS in this complex real-
world application.

References

1. Bonabeau, E., Henaux, F., Guérin, S., Snyers, D., Kuntz P., Theraulaz, G.: Routing
in Telecommunications Networks with “Smart” Ant-Like Agents. Intelligent Agents for
Telecommunications Applications (1998)

2. Berman, S., Edan, Y., Jamshidi, M.: Decentralized autonomous Automatic Guided Vehicles
in material handling. Transactions on Robotics and Automation 19(4) (2003)

3. De Wolf, T., Samaey, G., Holvoet, T., Roose, D.: Decentralised autonomic computing:
Analysing self-organising emergent behaviour using advanced numerical methods. 2th In-
ternational Conference on Autonomic Computing. IEEE (2005)

4. Ferber, J.: Multiagent Systems: An Introduction to Distributed Artificail Intelligence.
Addison-Wesley (1999) 439-445

5. Macy, M., Willer, R.: From Factors to Actors: Computational Sociology and Agent-Based
Modeling. Annual Review of Sociology 28 (2002)

6. Mamei, M., Zambonelli, F.: Programming Pervasive and Mobile Computing Applications
with the TOTA Middleware. International Conference on Pervasive Computing and Commu-
nication (2004)

7. Ong, L.: An investigation of an agent-based scheduling in decentralised manufacturing con-
trol. Ph.D Disseration University of Cambridge (2003)

8. Pallottino, L., Scordio, V.G., Frazzoli, E., Bicchi, A.: Decentralized cooperative conflict res-
olution for multiple nonholonomic vehicles. AIAA Conference on Guidance, Navigation and
Control (2005)

9. Parunak, H.V.D., Baker, A.D., Clark, S.J.: The AARIA Agent Architecture: From Manufac-
turing Requirements to Agent-Based System Design. Workshop on Agent-Based Manufac-
turing (1998)

10. Parunak, H.V.D., Brueckner, S., Sauter, J.: Digital Pheromones ofr Coordination of Un-
manned Vehicles. Post-proceedings of the First International Workshop on Environments
for Multiagent Systems, Lecture Notes in Computer Science Series, Vol. 3374 (2005)

234 D. Weyns, K. Schelfthout, and T. Holvoet

11. Schelfthout, K., Holvoet, T., Berbers, Y.: Views: Customizable abstractions for context-aware
applications in MANETs. Proceedings of the fourth international workshop on Software
engineering for large-scale multi-agent systems, St. Louis, USA. ACM Press (2005).

12. Sauter, J.A., Parunak, H.V.D.: ANTS in the Supply Chain. Workshop on Agent based Deci-
sion Support for Managing the Internet-Enabled Supply Chain, Seattle, WA (1999)

13. Weyns, D., Holvoet, T.: A Formal Model for Situated Multi-agent Systems. Formal Ap-
proaches for Multi-Agent Systems, R. Verbrugge and B. Dunin-Keplicz Eds., Special Issue
of Fundamenta Informaticae 63(2-3) (2004)

14. Weyns, D., Steegmans, E., Holvoet, T.: Protocol Based Communication for Situated Multi-
agent Systems. 3th International Joint Conference on Autonomous Agents and Multi-Agent
Systems, New York (2004)

15. Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments for Multi-
agent Systems, State-of-the-art and Research Challenges. First International Workshop on
Environments for Multiagent Systems, Lecture Notes in Computer Science Series, Vol. 3374
(2005)

16. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley and Sons, UK (2002)

Web Sites as Agents’ Environments:
General Framework and Applications

Stefania Bandini, Sara Manzoni, and Giuseppe Vizzari

Dipartimento di Informatica, Sistemistica e Comunicazione,
Università degli Studi di Milano–Bicocca,

Via Bicocca degli Arcimboldi 8 20126 Milan, Italy
Tel.: +39 02 64487835; fax: +39 02 64487839

{bandini, manzoni, vizzari}@disco.unimib.it

Abstract. A web site presents an intrinsic graph–like spatial structure
composed of pages connected by hyperlinks. This structure may represent
an environment in which agents related to visitors of the web site are
positioned and moved in order to track their navigation. To consider this
structure and to keep track of these movements allows the monitoring
of the site and its visitors, in order to support the enhancement of the
site itself through forms of adaptivity, but also to introduce new forms
of interaction among registered visitors. This paper presents a model
supporting the collection of information related to user’s behaviour in a
web site, and an application supporting the proposal of hyperlinks based
on the history of user’s movement in the web site environment. Moreover
the paper briefly describes a system implementing a context-aware form
of interaction, supporting the communication among visitors of a web
site through the exploitation of its structure.

1 Introduction

A web site presents an intrinsic graph–like spatial structure composed of pages
connected by hyperlinks. However, this structure is generally not considered by
web servers, which essentially act as a sort of extended and specific File Transfer
Protocol servers [1], receiving requests for specific contents and supplying the
related data. Several web–based applications instead exploit the structure of the
sites itself to support users in their navigation, generating awareness of their
position. For instance, many e–commerce sites emphasize the hierarchical struc-
ture linking pages related to categories (and possibly subcategories), included
products and their specific views, and remind users’ relative position (i.e. links to
higher level nodes in the tree structure). Some specific web–based applications,
mainly bulletin boards and forums (see, e.g., phpBB1), are also able to inform
users about the presence of other visitors of the web site or even, more precisely,
of the specific area of the site that they are currently viewing. Web site structure
and users’ context represent thus pieces of information that can be exploited to
supply visitors a more effective presentation of site contents.
1 http://www.phpbb.com/

D. Weyns, H. Van Dyke Parunak, and F. Michel (Eds.): E4MAS 2005, LNAI 3830, pp. 235–250, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

236 S. Bandini, S. Manzoni, and G. Vizzari

Different visitors, however, may have very different goals and needs, especially
with reference to large web sites made up of several categories and subcategories.
This consideration is the main motivation for the research in the area of adaptive
web sites [2]. The various forms of adaptation may provide a customization of
site’s presentation for an individual user or even an optimization of the site for all
users. There are various approaches supporting these adaptation activities, but
they are generally based on the analysis of log files which store low–level requests
to the web server: this kind of file is generally made up of entries including
the address of the machine that originated the request, the indication of the
time and the resource associated to the request. In order to obtain meaningful
information on users’ activities these raw data must be processed (see, e.g., [3]),
for instance in order to collapse requests related to various elements of a single
web page (e.g. composing frames and images) into a single entry. Moreover this
kind of information must be further processed to detect groups of requests that
indicate the path (web pages connected by hyperlinks) that a user followed in
the navigation. Recent results [4] show that this kind of analysis, also referred to
as web usage mining, could benefit from the consideration of site contents and
structure.

This paper proposes to exploit the graph-like structure of a web site as a
Multi–Agent System (MAS) environment [5] on which agents representing visi-
tors of the web site are positioned and moved according to their navigation. In
particular, in this case, the environment is a virtual structure which allows the
gathering of information on user’s activities in a more structured way, simplify-
ing subsequent phases of analysis and adaptation of site contents. Furthermore,
part of the adaptivity could be carried out without the need of an off-line analy-
sis, but could be the result of a more dynamic monitoring of users’ activities.
In particular, the paths that are followed by users are often related to recur-
rent patterns of navigation which may indicate that the user could benefit from
the proposal of additional links providing shortcuts to the terminal web pages.
Index pages may thus be enhanced by the inclusion of links representing short-
cuts to the typical destinations of the user in the navigation of the web site.
Users without a relevant history (and also anonymous or unrecognized ones)
may instead exploit the paths that are most commonly followed by site visitors.
Moreover such an information could also be communicated to the webmaster
suggesting possible modifications to the static predefined structure of the site.
This approach provides thus both a support for site optimization, but also for
the customization to specific visitor’s needs and preferences.

The metaphor of a web site as an environment on which users move in search
for information is not new (see, e.g., [6] but also more recent approaches such
as [7]), and its application to web site adaptation resembles the emergent, col-
lective phenomenon of trail formation [8] which is can be identified in several
biological systems. However this proposal provides more than just gather in-
formation on users’ behaviours for sake of web pages adaptation or navigation
support, but exploits the MAS environment to provide users a means for mutual
perception and interaction. In fact information related to users’ positions on the

Web Sites as Agents’ Environments: General Framework and Applications 237

environment representing the web site can also be used to supply them aware-
ness information on other visitors which are currently browsing the same page
or area of the site. Moreover to keep track of this information allows the concep-
tion of a form of interaction among users that is based on their positions on the
site. Essentially, more than just showing a user the other registered visitors that
are “nearby” (i.e. viewing the same page or adjacent ones), the system should
also allow to communicate with them. This form of interaction clearly requires
the adoption of a supporting technology that goes beyond the request/response
form (e.g. a Java applet). This kind of interaction represents a hybrid between
a common web site and an instant messenger (see, e.g., ICQ2Go!2).

The following section describes the general framework of this approach, the
mapping between the web site structure and agents’ environment, while Section 3
describes the kind of gathered information on agents’ movement in their environ-
ment. Section 4 describes an application providing the exploitation of this kind
of information for the adaptation of web pages, both for customization and opti-
mization, while Section 5 briefly introduces a system supporting a context-aware
form of interaction among visitors of the same web site. Concluding remarks and
future developments will end the paper.

2 Site Structure and Agents’ Positions

A web site is made up of a set of HTML pages (generally including multimedia
contents) connected by means of hyperlinks. It is possible to obtain a graph-like
structure mapping pages to nodes and hyperlinks to edges interconnecting these
nodes. This kind of spatial structure could be exploited as an environment on
which agents related to site visitors are placed and move according to the related
users’ activities. A diagram showing a sample mapping among a web site and
this kind of structure is shown in Figure 1.

This structure can be either static or dynamic: for instance it could vary
according to specific rules and information stored in a database (i.e. database
driven web sites). However, this kind of structure (both for static and dynamic
web sites) can generally be obtained by means of a crawler (see, e.g., Sphinx [9]
and the related WebSphinx project3); then it could be maintained by having
periodic updates.

Given this spatial structure, a multi-agent model allowing an explicit repre-
sentation of this aspect of agents’ environment is needed to represent and exploit
this kind of information. Environments for Multi Agent Systems [10] and situ-
ated agents represent promising topics in the context of MAS research, aimed
at providing first class abstractions for agents environment (which can be more
than just a message transport system), towards a clearer definition of concepts
such as locality and perception. There are not many models for situated agents,
which provide an explicit representation of agent’s environment. Some of them
are mainly focused on providing mechanisms for coordinating situated agent’s
2 http://go.icq.com/
3 http://www-2.cs.cmu.edu/ rcm/websphinx/

238 S. Bandini, S. Manzoni, and G. Vizzari

Fig. 1. The diagram shows a mapping between a web site structure and an agent
environment

actions [11], other provide the interaction among agents through a modification
of the shared environment (see, e.g., [12,13]). An interesting approach that we
adopted for this work is represented by the Multilayered Multi Agent Situated
Systems (MMASS) [14] model. MMASS allows the explicit representation of
agents’ environment through a set of interconnected layers whose structure is an
undirected graph of nodes (also referred to as sites in the model terminology;
from now on we will use the term node to avoid confusion with web sites). The
model was adopted given the similarity among the defined spatial structure of
the environment and the structure underlying a web site. Moreover the model
defines a set of allowed actions for agents’ behavioural specification (including a
primitive for agents’ movement); for this specific application, however, the con-
straint which limits the number of agents positioned in a node was relaxed. In
fact there is no limit to the number of users that are viewing the same web page.

Moreover a platform for the specification and execution of simulations based
on the MMASS model [15] was exploited to implement the part of the sys-
tem devoted to the management of agents in their environments. The definition
of spatial structure of the environment was supplied by the previously intro-
duced crawler, while agents’ movement is guided by external inputs generated
by the requests issued by the related web site visitor. The general architecture
of the system is shown in Figure 2: the Agent server module is implemented
through the MMASS platform, while the Web server is represented by Snip-
Snap4, a Java-based weblog and wiki software. The highlighted Tracker module
is a implemented through a Java Servlet, which is invoked by every page of the
site but does not produce a visible effect on the related web page. Contents
created through the SnipSnap page creation facility automatically include this

4 http://snipsnap.org

Web Sites as Agents’ Environments: General Framework and Applications 239

Fig. 2. A diagram showing how user actions influence the related agent through the
capture of requests by the Tracker module

invocation, which is specified in the template for new pages, while other contents
(e.g. specific HTML pages, Java Server Pages) should explicitly state it in order
to be included in the site spatial structure. The Tracker is responsible for the
management of user authentication and requests, but it is also responsible for
the creation of agents related to visitors and for the triggering of their movement
in the environment related to the web site.

In particular, when a user makes his/her first page request, the Tracker tries
to set a cookie on the client including the session information. If the cookie
is accepted, then it is possible to use the session information and the Referer
parameter of the HTTP request header to track user’s movement in the graph
related to the web site. Requests from clients not accepting cookies will thus not
be monitored.

Moreover, the management of agents creation and movement is not as simple
as its intuitive description might indicate. In fact, the same user could be using
different browser pages or tabs to simultaneously view distinct pages of the site.
In other words, a user might be simultaneously following different trajectories in
his/her web site navigation. In order to manage these situations, a user can be
related to different agents, and his/her requests must be associated to the correct
agent (possibly a new one). Finally, agents related to finished (or interrupted)
user navigation should be eliminated by the system, storing the relevant part of
their state in a persistent way, until the related user requires again a page of the
site. In particular, remote users’ requests may be divided into two main classes,
according to their effects on the Tracker and Agent server:

– creating a new agent : whenever a new user requires a web page, the Tracker
will invoke the Agent Server requiring the creation of an agent whose starting
position is the node related to the required page; the same effect is generated
by a request coming from an already registered user which was not present
in the system, but in this case information related to previous user agents
must be retrieved in order to determine the new agent’s state; finally, when

240 S. Bandini, S. Manzoni, and G. Vizzari

an already registered and active user requires a page that is not adjacent to
its current one, a new agent related to the new browsing activity must also
be created;

– generating the movement of an agent : when the viewer of a page follows one
of the provided links, the related web browser will generate a request for
a page that is adjacent to one of the related agents which must be moved
to the node related to the required page; whenever there are two or more
agents in positions that are adjacent to the required page, in order to solve
the ambiguity and choose the agent to be moved, the Tracker will invoke
the Session object in which it stores the current URL related to the viewed
page.

Finally, the Tracker can also represent a resource in the management of the
spatial structure of the environment. Whenever the high dynamism of the struc-
ture (and in particular the addition of new pages) or particular architectural
choices or web server configurations prevent the adoption of the web crawler
solution, the Tracker can actually create sites related to pages that were not pre-
viously present in the environment, interacting with the Agent Server. Figure 3
shows a sample situation in which the spatial structure of the environment is
not present until actual requests are captured by the Tracker. In (a) no page of
the web site is still present in the environment, while in (b) a user just requested
the page A. The latter was analyzed and outgoing links were identified, so three
sites were created, respectively related to pages A, B and C; user’s request of
page C generates in turn the situation shown in (c), that is, the creation of sites
related to pages D, E and F.

A prototype implementation of this approach to the creation and manage-
ment of the spatial structure of the web site (as well as the web crawling solution)
was realized and tested in a small scale web site, but it must be noted that this
work is not meant as a contribution to solving the “invisible web” [16] issues (i.e.
pages on the World Wide Web that are not simply indexed by common search
engines and related technologies). It represents instead a possible approach to
the design and development of web sites exploiting a MAS architecture support-

Fig. 3. The diagram shows the dynamic management of the web space according to
actual requests captured by the Tracker

Web Sites as Agents’ Environments: General Framework and Applications 241

ing a novel form of users’ monitoring, a simple adaptation approach and a new
form interaction among users.

The following section will describe how the raw information that can be
gathered thanks to the above described framework can be processed in order to
obtain higher level indications on users’ behaviours.

3 Gathered Information: Users’ Traces

This system allows to gather and exploit two kinds of information: first of all
situated agents related to web site visitors have a perception of their local con-
text, both in terms of relative position, adjacent nodes and presence of other
visitors; second, agents may gather information related to the paths defined by
the browsing activities or the related user in the site itself.

There are inherent issues in determining in a precise way the actual users’
activities on the web site, due to the underlying request/response model: the only
available indications on these activities can be obtained by requests captured by
the Tracker. In particular, we have an indication of the page that was required
by a user and the time-stamp of the request. Starting from this raw information
we can try to detect emerging links, which are hyperlinks that are not provided by
the structure of the site but can be derived by the behaviour of specific visitors.
To this purpose, the concept of trace was introduced as a higher level information
describing the behaviour of a user. A trace synthesizes a path followed by a
user, from the web page representing his/her entry point, to a different point
of the environment (i.e. another web page) which may represent an interesting
destination. Every agent related to a visiting user is associated to a temporary
trace, and it may generate several actual traces (also called closed traces) in the
course of its movement in the environment.

Formally a trace is a three-tuple 〈AId, Start, Dest〉, where AId represents
the identifier of the agent to which the trace is related, while Start and Dest
indicate the starting and destination node related to the browsing sequence
which generated the trace. A new trace is generated when a user enters the site,
triggering the creation of a related agent. The starting trace has a null value
for the destination node. Subsequent requests by the user generated following
hyperlinks will bring the related agent to an adjacent node, and the the Dest
field of the corresponding trace will be modified in order to reflect user’s current
position. Non trivial traces provide Start and Dest nodes that are not directly
connected by means of a hyperlink.

There are two relevant exceptions to the basic rule for trace update, that are
related respectively to the duplication of a trace and to its closing. According
to the previously introduced informal definition, a trace should be coherent in
time and space. In fact, whenever the same user requires simultaneously two
or more different pages he/she is probably following distinct search trajectories,
possibly even related to different goals. In this case, as previously introduced,
the Tracker will detect this situation and create additional agents that refer to
the same user. Figure 4 shows two sample situations providing respectively trace

242 S. Bandini, S. Manzoni, and G. Vizzari

A

1 2

3
4

Trace 1

Trace 2

(a) (b)

1

Trace 2

2

A1

A2

Trace 1

A1

Fig. 4. A diagram describing two traces that are derived by a sequence of user requests

duplication and closing: in (a) the user has chosen to open a hyperlink in a new
browser page (request 1) and then has followed another link in the first browser
page (request 2). According to the previously described Tracker behaviour, two
agents are now associated to the user, and they are associated to different traces
sharing the Start field.

In (b), instead, the user has followed links 1 and 2 from the starting page,
then he/she made a step back (request 3) and eventually moved to the last
known position (request 4). The step back causes the closure of the temporary
trace associated to the agent (Trace 1 in the Figure), and the creation of a new
temporary one with the same Start field (Trace 2). In this case the step back
may have different interpretations: it could refer to a negative evaluation of the
page contents but it could also indicate the fact that the user has found what
he/she was searching for. An information that could be exploited to determine
if the Dest field of the trace was interesting for the user is the time interval
between request 2 and 3: for instance, given Δtd a threshold indicating the
minimum time required to reasonably inspect the content of a specific web page,
if timestamp(3)− timestamp(2) < Δtd then Trace 1 could be ignored. However,
the mere interval between the two requests is not a safe indicator of the fact that
the page was actually viewed and considered interesting.

In fact, the time spent on a web page is also important in order to determine
when a temporary trace must be closed. In fact, whenever a user does not issue
requests for a certain time we could consider that his/her browsing activity has
stopped, possibly because he/she is reading the page related to the Dest field
of the trace associated to the related agent. In other words, every agent has a
timer, set to the previously introduced threshold Δtd, which is set when the
agent is created and it is reset whenever it moves. The action associated to this
timer specifies that its temporary trace becomes closed, and a new timer is set:
the action associated to this second timer caused the disappearance of the agent
from the system, and the storage of the related state.

It is important to note that even anonymous visitors (i.e. non authenticated
ones) whose clients are accepting cookies, can be tracked and can thus generate
traces, although anonymous ones. The latter can be exploited for sake of web
optimization but are not relevant for sake of user specific site customization.

Web Sites as Agents’ Environments: General Framework and Applications 243

Fig. 5. Users’ actions, captured by the related agents, influence the construction of
subsequent web pages

Figure 5 shows how the information generated by user agents, and in particular
traces, can be used to influence the new pages that will be generated by the Web
server, and more precisely by the SnipSnap based Content Management system.
In fact the latter uses information stored in a database to compose the required
web pages; agents store information related to closed traces into this database,
and a specific dynamic user interface element exploits this information to propose
links that are not included in the basic structure of the site that are considered
interesting, according to the previous user’s behaviour. The following section will
more thoroughly discuss the application of this framework for web site adaptivity.

4 Web Site Adaptation

4.1 Proposed Approach

The adopted instrument for the dynamic generation of web pages based on the
content of a database organizes the structure of pages in blocks. The imple-
mented system provides a static header block, including relevant areas of the
web site, a left column providing dynamic additional information, such as the
current user position in the structure of the web site and relevant links, and a
main central area in which the specific current content is shown in details. The
area which is interested in the first experimentation of this approach to con-
tent adaptivity is included in the left column. It is aimed at showing a visitor
emerging links, that are hyperlinks not included in the predefined structure of
the site but are considered interesting according to the history of the related
user. These emerging links have some kind of relationship with the previously
introduced traces, which represent behaviours and movements of a user in a web
site. The strategy which is adopted to select the most relevant traces to be pre-
sented to a given user in a given situation represents the behavior of an interface
agent whose responsibility is the management of this adaptive sub-block of the
user interface related to the web site. Figure 6 presents a screenshot of a sample

244 S. Bandini, S. Manzoni, and G. Vizzari

Fig. 6. A screenshot of a web page adapted according to gathered traces and interface
agent selection strategy

adapted web page: the visitor is recognized and his/her movement are monitored
by the Tracker. The lower part of the left column presents three links related to
stored traces related to the same user.

A first element of this strategy is adopted when new users (or non authenti-
cated ones) enter the site. In this case the user has no previous history (or it is
not possible to correlate the user with his/her history), and the adopted strategy
considers all stored traces, not considering the user which generated them. An
additional information that is stored with traces is the number of times that
the related trace was effectively selected and shown to a user and the number
of times that the related link was effectively exploited by a user. This kind of
information allows to obtain an indication of the success rate of the hyperlinks
that were chosen by the interface agent, and can be exploited by this agent to
select the traces to be shown in the adaptive block. Furthermore this success rate
can be used by the web master to consider which traces should be considered as
emerging links to be included in the predefined site structure. Summarizing, the
interface agent, in order to select which traces must be proposed as emerging
links, considers two kinds of information: the occurrence of trace generation and
the success rate of the traces that were proposed.

When the interface agent has an indication of the user which issued the
request, it may focus the selection activity to those traces that compose the
history of user’s activities in the web site, in a web customization framework. In
fact traces include an indication of the agent which generated them, and in turn
agents are related to registered users. As for the anonymous or new user case,
also this strategy must consider both the occurrence of traces and their success
rate. Moreover, in order to focus on a specific user’s history but do not waste the
chance to exploit other users’ experiences, just two of the three available slots
for emergent links are devoted to traces that were generated by that user and
one is selected according to the strategy adopted for anonymous or new users.

Web Sites as Agents’ Environments: General Framework and Applications 245

These strategies for the exploitation of the gathered and stored traces, based
on users’ behaviours and movement in the web site environment, represent a very
simple way of exploiting this kind of information without requiring an off-line
analysis of the logs generated by the web server. The design, implementation and
test of more complex strategies, for instanced based on details of the outcomes
of emerging link proposals (e.g. which user effectively followed the suggested
adaptive hyperlink) are object of future works.

4.2 Related Works

There are several approaches and relevant experiences in the area web site adap-
tation. The Avanti project [17] provides an automated customization of web site
contents, basing on user modelling techniques and analysis of their behaviours.
It also provided a specific attention to specific needs of elderly and partially
disabled users.

The Footprints system [6] instead provides a site optimization through the
metaphor of site visitors leaving traces in their navigation. These signals ac-
cumulate in the environment, generating awareness information on the most
frequently visited areas of the web site. No user profile is needed, as visitors
are essentially provided this information which could represent an indicator of
the most interesting pages to visit. The metaphor of the structure of the web
site as an environment on which visitors move in their search for information is
very similar to the one on which the proposed framework is based, but we also
propose the exploitation of the gathered information on users’ paths for user
specific customization.

Other approaches provide instead the generation of index pages [3], that are
pages containing links to other pages covering a specific topic. These pages, re-
sulting from an analysis of access logs aimed at finding clusters grouping together
pages related to a topic, are proposed to web masters in a computer-assisted site
optimization scheme. A different approach provides the real-time generation of
shortcut links [18], through a predictive model of web usage based on statistical
techniques and the concept of expected saving of a shortcut, which considers both
the probability that the generated link will be effectively used and the amount
of effort saved (i.e. intermediate links to follow). In particular this framework is
very similar to the one proposed here with reference to the aims of the overall
system, but it incorporates a complex algorithm for off-line analysis of logs, while
the proposed approach provides a light and dynamic generation of most proba-
ble useful links and the storage of these proposals and high level information on
site usage for a possible further off-line analysis.

In the agent area, a relevant approach provides the adoption of information
agents supporting users in their navigation [19], considering both his/her specific
behaviour and the actions of other visitors and adopting multiple strategies for
making recommendations (e.g. similarity, proximity, access frequency to specific
documents).

A different approach to web site adaptation provides the adoption of a learn-
ing network to model the evolution of a distributed hypertext network, such as

246 S. Bandini, S. Manzoni, and G. Vizzari

a web site [20]. Also in this case the adaptation provides a modification in the
structure of a web site, and the concept of emergent link and the underlying
mechanisms present a similarity with the learning rules adopted for that kind
of learning network. However that approach also provides a modification in the
architecture of the site and modifications in the web protocols, while this work
aims at providing a solution that can be easily integrated with a traditional web
architecture.

From this point of view, the introduced system supporting web site adapta-
tion seems more similar to a recommendation system. A relevant type of recom-
mender exploiting users’ behaviours to decide which contents could be interest-
ing for a certain visitor is represented by the collaborative filter approach [21].
The latter has been adopted in different recommendation systems, filtering mail
messages, newsgroup articles and web contents in general, but typically requires
users to rate these items. Moreover it generally provides a concept of explicit
users descriptions through profiles which can be compared to determine simi-
larity among them. The idea is that contents that received a high rating by a
certain user could be considered interesting by a similar user. The introduced
system instead does not require an explicit rating of contents, but it rather ob-
serves the frequency of specific navigation paths, and exploits emergent links for
customization or optimization of site structure. However, the adaptive block of
the page can include emerging links that are not related to the specific visitor
who is currently browsing that page, but were generated by other users which
frequently followed paths that the current one still did not follow. From this
point of view, the system provides a very basic collaborative browsing scheme,
but a more through analysis of a possible integration with this approach is object
of current and future works.

5 Towards New Forms of Interaction

The metaphor of a web site as an environment on which agents related to visitors
move according to their browsing activity allows to gather and exploit informa-
tion on users’ behaviours for sake of web pages adaptation in a collaborative
agents framework. Another interesting possibility offered by this framework pro-
vides the exploitation of this structure and information to provide users a of
context aware interaction form. While several web based applications are able
to provide users an awareness information related to their position on the web
site (e.g. the category of products their are currently viewing in an e-commerce
site), and also an indication of other users that are currently viewing the same
page, we propose to exploit this information on user context to support user
interaction. Such a system represents a hybrid among a web application and an
instant messenger, and could be fruitfully exploited in sites related to relatively
small communities. In fact, the number of visitors that are viewing a single web
page may be relatively high and difficult to present5 in an effective and usable
way in a block of a web page or in a separate page that however should not
5 See, e.g., the “What’s Going On?” section of RPGnet forums (http://forum.rpg.net).

Web Sites as Agents’ Environments: General Framework and Applications 247

occupy a large portion of user screen. In order to support this new form of inter-
action among web site visitors, the general architecture of the system must be
modified. In particular, a client-side component able to establish and maintain
a connection with the Agent server must be included. A possible approach to
tackle this problem provides the inclusion of an applet as a block of the web page
structure which is constantly presented to the users (see Figure 7 for a diagram
of the modification of the general architecture).

Fig. 7. In order to support interaction among web page visitors a client-side component
(Context aware interaction applet) must be included in the system architecture

The proposed form of interaction is context aware as a visitor is able to
perceive other users currently viewing the same web page or adjacent ones and
can try to interact with them. The perception of other users and the interaction is
thus mediated by the environment, and given the fact that generally the structure
of a web site reflects an underlying semantics (e.g. index pages which connect
elements of a category) the concept of adjacency can be a relevant contextual
element.

The MMASS multi-agent model provides both a concept of agent perception
and two mechanisms for interaction: a direct form of interaction among adjacent
agents is provided through the reaction operation, but agents are also able to
emit fields which propagate in the spatial structure of the environment and
may be perceived by other agents. The first mechanism may be invoked by a
user which tries to establish an interaction with another one, provided that a
preliminary agreement phase is successfully carried out. This phase represents
a possibility for a user to ignore incoming interaction requests. The other form
of interaction instead provides the diffusion of an information conveyed by a
field which may represent a message of general interest for visitors of a specific
area of the site. Such message could represent a help request to other visitors of
the area which could be interested in the same subject. In this framework, the
design of diffusion strategies for this kind of field should take into account the
underlying conceptual structure of the web site. For instance, in an e-commerce
site, fields generated in a page related to a product could be related to a request
of information on that subject. These fields should thus be diffused in pages
related to the product category and other instances of that category, but should
probably not be diffused into areas related to other categories. Figure 8 shows
this sample diffusion strategy.

248 S. Bandini, S. Manzoni, and G. Vizzari

Fig. 8. A sample diffusion strategy in an e-commerce web site: fields are propagated
inside a category but do not reach other ones

In addition to the agreement phase which precedes the effective reaction, the
model provides the definition of the perceptive capabilities of every agent, and
thus of every user. The actual sensitivity to fields also depends on agent state, so
there is the possibility to model and implement different levels of availability of a
user to incoming interaction requests. For instance, in the e-commerce example,
some agents could be related to operators of the product support service, and
could thus be more sensitive to help requests, while the casual visitor of the site
could be less sensitive to these messages.

6 Conclusions and Future Developments

This paper introduced a general framework providing the adoption of a web site
as an environment on which agents related to visitors move and possibly interact.
This approach allows the gathering of a more structured form of information on
users’ behaviours and activities in the web site. The concept of emerging links
and traces have been introduced in order to support an application exploiting
information on users’ browsing history for sake of web pages adaptation. The
introduced framework and the application to web site adaptation have been
designed and implemented, exploiting a platform supporting systems based on
the MMASS model.

A campaign of tests aimed at evaluating the effectiveness of the adaptation
approach, and also for sake of tuning the involved parameters (e.g. timings,
number of presented possible emerging links) is under way, in the context of a
collaboration with the Italian company Cosmovision Srl. This evaluation will
provide both forms for user interviews and the exploitation of the gathered in-
formation of the success rate of proposed adaptive hyperlinks. The results of this
evaluation might also lead to consider the modelling, design and implementation
of more complex trace selection strategies, and thus a more complex behaviour
for the interface agent.

An application exploiting the data gathered by the system in order to support
the monitoring and visualization of the web site structure and utilization is
currently being developed. Future works will be focused on the introduction and

Web Sites as Agents’ Environments: General Framework and Applications 249

exploitation of higher level semantic information related to the site structure and
contents, and thus agents’ environment, aimed at providing additional forms of
adaptation, including images and multimedia contents. A further development
provides the design and implementation of a prototype supporting the context-
aware interaction among web site visitors.

References

1. Tanenbaum, A.S.: Computer Networks - third edition. Prentice Hall (1996)
2. Perkowitz, M., Etzioni, O.: Adaptive Web Sites: an AI Challenge. In: Proceedings

of the Fifteenth International Joint Conference on Artificial Intelligence. (1997)
16–23

3. Perkowitz, M., Etzioni, O.: Adaptive Web Sites. Communications of the ACM 43
(2000) 152–158

4. Cooley, R.: The Use of Web Structure and Content to Identify Subjectively Inter-
esting Web Usage Patterns. ACM Transactions on Internet Technology 3 (2003)

5. Weyns, D., Van Dyke Parunak, H., Michel, F., Holvoet, T., Ferber, J.: Environ-
ments for Multiagent Systems State-of-the-Art and Research Challenges. In: Envi-
ronments for Multi-Agent Systems, First International Workshop (E4MAS 2004).
Volume 3374 of Lecture Notes in Computer Science., Springer–Verlag (2005) 1–47

6. Wexelblat, A., Maes, P.: Footprints: History-Rich Tools for Information Foraging.
In: Proceedings of the SIGCHI conference on Human factors in computing systems,
ACM Press (1999) 270–277

7. Liu, J., Zhang, S., Yang, J.: Characterizing Web Usage Regularities with Infor-
mation Foraging Agents. IEEE Transactions Knowledge and Data Engineering 16
(2004) 566–584

8. Helbing, D., Schweitzer, F., Keltsch, J., Molnár, P.: Active Walker Model for the
Formation of Human and Animal Trail Systems. Physical Review E 56 (1997)
2527–2539

9. Miller, R.C., Bharat, K.: Sphinx: a Framework for Creating Personal, Site-Specific
Web Crawlers. Computer Networks and ISDN Systems 30 (1998) 119–130

10. Weyns, D., Michel, F., Van Dyke Parunak, H., eds.: Environments for Multi-Agent
Systems, First International Workshop (E4MAS 2004). Volume 3374 of Lecture
Notes in Artificial Intelligence., Springer–Verlag (2004)

11. Weyns, D., Holvoet, T.: Model for Simultaneous Actions in Situated Multi-Agent
Systems. In: First International German Conference on Multi-Agent System Tech-
nologies, MATES. Volume 2831 of Lecture Notes in Computer Science., Springer–
Verlag (2003) 105–119

12. Mamei, M., Zambonelli, F., Leonardi, L.: Co-fields: Towards a Unifying Approach
to the Engineering of Swarm Intelligent Systems. In: Engineering Societies in the
Agents World III: Third International Workshop (ESAW2002). Volume 2577 of
Lecture Notes in Artificial Intelligence., Springer–Verlag (2002) 68–81

13. Hadeli, K., Valckenaers, P., Zamfirescu, C., Van Brussel, H., Saint Germain, B.,
Hoelvoet, T., Steegmans, E.: Self-Organising in Multi-Agent Coordination and
Control Using Stigmergy. In: Engineering Self-Organising Systems: Nature-Inspired
Approaches to Software Engineering. Volume 2977 of Lecture Notes in Computer
Science., Springer–Verlag (2004) 105–123

250 S. Bandini, S. Manzoni, and G. Vizzari

14. Bandini, S., Manzoni, S., Simone, C.: Dealing with Space in Multi–Agent Sys-
tems: a Model for Situated MAS. In: Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems, ACM Press (2002)
1183–1190

15. Bandini, S., Manzoni, S., Vizzari, G.: Towards a Specification and Execution Envi-
ronment for Simulations Based on MMASS: Managing At–a–distance Interaction.
In Trappl, R., ed.: Proceedings of the 17th European Meeting on Cybernetics and
Systems Research, Austrian Society for Cybernetic Studies (2004) 636–641

16. Sherman, C., Price, G.: The Invisible Web: Uncovering Information Sources Search
Engines Can’t See. CyberAge Books (2001)

17. Fink, J., Kobsa, A., Nill, A.: User-Oriented Adaptivity and Adaptability in the
Avanti Project. Technical report, Microsoft Usability Group (1996)

18. Anderson, C.R., Domingos, P., Weld, D.S.: Adaptive Web Navigation for Wireless
Devices. In: Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence. (2001) 879–884

19. Pazzani, M.J., Billsus, D.: Adaptive Web Site Agents. Autonomous Agents and
Multi-Agent Systems 5 (2002) 205–218

20. Bollen, J., Heylighen, F.: Algorithms for the Self-Organisation of Distributed,
Multi-User Networks. Possible Application to the Future World Wide Web. In
Trappl, R., ed.: Proceedings of the 13th European Meeting on Cybernetics and
Systems Research, Austrian Society for Cybernetic Studies (1996) 911–916

21. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an Open
Architecture for Collaborative Filtering of Netnews. In: CSCW ’94: Proceedings of
the 1994 ACM conference on Computer Supported Cooperative Work, ACM Press
(1994) 175–186

Environment Organization of Roles Using
Polymorphism

Derek Messie and Jae C. Oh

Department of Electrical Engineering and Computer Science,
Syracuse University, Syracuse, NY 13244, USA

{dsmessie, jcoh}@syr.edu

Abstract. In the field of multi-agent systems, there has lately been
a growing interest on ways in which the environment can better be ex-
ploited to coordinate agent behavior and manage complex problems. This
paper describes an environment that is able to organize and adapt agent
roles as conditions warrant. Roles are adapted using polymorphism as
directed by the environment. The design combines strategies from game
theory and other biologically inspired models to address fault mitiga-
tion in large-scale, real-time, distributed systems. It is implemented on
a prototype of the data acquisition system for BTeV, a High Energy
Physics experiment consisting of 2500 digital signal processors. Results
show environment organization of roles for the lightweight agents em-
bedded within each of the individual processors.

1 Introduction

A major research theme for multi-agent systems is on investigating various archi-
tectures and methodologies that promote effective organization and coordination
within large-scale, complex, distributed systems [1, 2]. Specifically, the interest is
in developing approaches that can be implemented within multi-agent systems to
produce some desirable emergent behavior that coordinates individual actors in a
system competing for resources such as bandwidth, computing power, and data.

The environment is increasingly being explored as an underutilized resource
for engineering these complex systems. Most researchers overlook opportunities
to integrate the environment as a primary abstraction in models and tools for
multi-agent systems, or minimize its responsibilities [3]. This paper explores
various design techniques that rely on the environment to facilitate organization
within the system.

Multi-agent systems methodologies that exhibit self-* (self-organizing, self-
managing, self-optimizing, self-protecting) attributes are of particular value
[4, 5]. This paper introduces polymorphic self-* agents that are capable of mul-
tiple roles as directed by the environment. A working definition of polymorphic
agents is provided. These agents evolve an optimum core set of roles for which
they are responsible, while still possessing the ability to take on alternate roles
as environmental demands change. They are directly implementable in computer
systems applications.

D. Weyns, H. Van Dyke Parunak, and F. Michel (Eds.): E4MAS 2005, LNAI 3830, pp. 251–269, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

252 D. Messie and J.C. Oh

The approach adapts polymorphic agents to the environment using stigmergy,
a concept that explains organization and coordination within social insect so-
cieties that rely strictly on environmental cues for indirect communication be-
tween individuals. It is implemented on RTES/BTeV, a data acquisition system
developed by the Real-Time Embedded Systems (RTES) group for a particle
accelerator-based High Energy Physics (HEP) experiment currently under de-
velopment at Fermi National Accelerator Laboratory. Multiple layers of polymor-
phic, very lightweight agents (VLAs) are embedded within 2500 Digital Signal
Processors (DSPs) to handle fault mitigation across the system. The primary
challenge is to determine the frequency at which VLAs should perform spe-
cific monitoring tasks. Results show how polymorphic self-* VLAs evolve inde-
pendently to find the optimum rate at which monitoring and fault mitigation
tasks should occur. SWARM multi-agent simulation software is used to model
RTES/BTeV.

The paper is divided into four separate sections. First, some background
on self-* systems, polymorphism and stigmergy, along with the RTES/BTeV
experiment itself is provided. A description of VLAs embedded within Level
1 of the RTES/BTeV environment is provided, followed by an explanation of
current challenges and other motivating factors. Section 3 then introduces a
working definition for polymorphic agents, and provides details on the design.
Next, results of a SWARM simulation of the RTES/BTeV environment that
implements the polymorphic self-* approach are evaluated in Sect. 4. Finally,
next steps and a conclusion are provided.

2 Background and Motivation

2.1 Self-* Systems

Distributed AI research has been increasingly interested in techniques and
methodologies that promote self-* (self-organizing, self-managing, self-
optimizing, self-protecting) behavior within computing systems. Several inter-
national conferences and workshops that focus specifically on this issue have
formed in the past few years (SOAS, ESOA, SELF-STAR, WOSS).

Self-organization is defined formally as a ‘dynamical and adaptive process
where systems acquire and maintain structure themselves, without external con-
trol’ [6]. Other similar definitions refer to systems that are self-organizing, self-
managing, self-optimizing, and self-protecting as being capable of dynamically
changing their functionality and structure without direct intervention to meet
changing conditions within the environment. Self-* systems typically changes
progressively, in non-linear fashion, until a state is reached where system require-
ments are satisfied. These systems continually adapt to changing conditions and
requirements.

While self-organization and adaptation have been studied intensively in con-
trol theory, systems theory, adaptive complex systems, robotics, etc., they are
relatively new concepts for computing systems [7]. Since computing systems are
basically artificial entities, they are usually difficult to apply to conventional

Environment Organization of Roles Using Polymorphism 253

(a) (b) (c)

Fig. 1. (a) Large termite mound commonly found in subsaharan Africa. (b) The
mounds act as respiratory devices, built from the surrounding soil by the termites
in a colony. The mound powers ventilation of the subterranean nest by capturing en-
ergy from the wind. (c) Air shafts lead to underground spaces where larvae, food, and
fungus is stored.

principles or approaches for self-organization and adaptation aimed at physi-
cal laws governed systems. Unlike the frameworks established for understanding
and engineering self-organization and adaptation in systems governed by physi-
cal laws, the framework for self-organization and adaptation in artificial systems
has yet to be established.

2.2 Polymorphism and Stigmergy

In many of the self-* architectures and methodologies developed, inspiration
is often derived from biological systems [8, 9]. The approach introduced in this
paper is largely based on two behaviors commonly found in social insect
societies.

Concepts of polymorphism and stigmergy are founded in biology and the
study of self-organization within social insects. The term polymorphism is used
in describing ants and other social biological systems, and is defined as the
occurrence of different forms, stages, or types in individual organisms or in or-
ganisms of the same species, independent of sexual variations [10, 11]. Within an
individual colony consisting of ants with the same basic genetic wiring, two or
more castes belonging to the same sex can be found. A caste here is defined as
a differentiated morphological form with a specialized function, or at least the
infrequent relict of such a form. The function or role that any individual ant
takes on is dictated by cues from the environment [12].

The agents described in detail in Sect. 3 of this paper adhere to this defi-
nition of polymorphism in that they are genetically identical, yet each evolve
distinct roles that they play as demanded of them through changes in the
environment.

The concept of polymorphic agents presented in this paper is different from
other definitions of polymorphism that have surfaced in computer science. In

254 D. Messie and J.C. Oh

object-oriented programming, polymorphism is usually associated with the abil-
ity of objects to override inherited class method implementations [13]. The term
has also arisen in other subareas of computer science, including some agent
designs [14], but generally describes a templating based system or similar vari-
ation of the object-oriented model. On the other hand, techniques that attempt
to evolve specialized agents are one of the central themes under investigation in
the field of large-scale multi-agent systems [15].

Stigmergy was introduced by biologist Pierre-Paul Grasse to describe indirect
communication that takes place between individuals in social insect societies
[16]. The theory explains how organization and coordination of the building
of termite nests is mainly controlled by the nest itself, and not the individual
termite workers involved. It views the process of emergent cooperation as a result
of participants altering the environment and reacting to the environment as they
pass through it. The canonical example of stigmergy is ants leaving pheromones
in ways that help them find the shortest, safest distance to food or to build nests.
Ant colony optimization methods alone have had a wide impact on coordination
within multi-agent systems, addressing various adaptive network routing and
load balancing problems [17, 18].

A stigmergic approach to fault mitigation is introduced in this paper. Indi-
vidual agents communicate indirectly through errors that they find (or do not
find) in the environment. This indirect communication is manifested through
actions that each agent takes as cued by the environment. Results show how the
local actions of agents allow self-* global behavior to emerge.

2.3 RTES/BTeV

BTeV (B-physics experiment at the Tevatron Collider) is a proposed particle
accelerator-based High Energy Physics (HEP) experiment currently under devel-
opment at Fermi National Accelerator Laboratory. The goal is to study charge-
parity violation, mixing, and rare decays of particles known as beauty and charm
hadrons, in order to learn more about matter-antimatter asymmetries that exist
in the universe today [19]. An aerial view of the particle collider located at Fermi
National Laboratory is shown in Fig. 2.

The experiment uses approximately 30 planar silicon pixel detectors that are
connected to specialized field-programmable gate arrays (FPGAs). The FPGAs
are connected to approximately 2500 digital signal processors (DSPs) that filter
incoming data at the extremely high rate of approximately 1.5 Terabytes per
second from a total of 20x106 data channels. A three tier hierarchical trigger
architecture will be used to handle this high rate [19]. An overview of the BTeV
triggering and data acquisition system is shown in Fig. 3, including a magnified
view of the L1 Vertex Trigger responsible for Level 1 filtering consisting of 2500
Worker nodes (2000 Track Farms and 500 Vertex Farms).

There are many Worker level tasks that the Farmlet VLA (FVLA) is respon-
sible for monitoring. A traditional hierarchical approach would assign one (or
more) distinct DSPs the role of the FVLA, with the responsibility of monitor-
ing the state of other Worker DSPs on the node [20]. However, this leaves the

Environment Organization of Roles Using Polymorphism 255

Fig. 2. Aerial view of the Fermilab Tevatron, the world’s highest-energy particle col-
lider. Beams of protons and antiprotons are collided to examine the basic building
blocks of matter.

system with only very few possible points of failure before critical tasks are left
unattended.

Another approach would be to assign a single redundant DSP (or more)
to each and every Worker DSP, to act as the FVLA [21]. However, since 2500
Worker DSPs are projected, this would prove expensive and may still not fully
protect all DSPs given even a low number of system failures.

The events that are actually accepted within this system occur very infre-
quently, and the cost of operating this environment is high. The extremely large
streams of data resulting from the BTeV environment must be processed real-
time with highly resilient adaptive fault tolerant systems [22]. For these reasons,
a Real-Time Embedded Systems Collaboration (RTES) was formed with the
purpose of designing real-time embedded intelligent software to ensure data in-
tegrity and fault-tolerance within this data acquisition system.

2.4 Very Lightweight Agents (VLAs)

Multiple levels of very lightweight agents (VLAs) [23] are one of the primary
components responsible for fault mitigation across RTES/BTeV.

The primary objective of the VLA is to provide the RTES/BTeV environment
with a lightweight, adaptive layer of fault mitigation. One of the latest phases
of work at Syracuse University has involved implementing embedded proactive
and reactive rules to handle specific system failure scenarios.

256 D. Messie and J.C. Oh

Fig. 3. The BTeV triggering and data acquisition system showing (left side) detector,
buffer memories, L1, L2, L3 clusters and their interconnects and (right side) a magnified
figure of the L1 Vertex trigger

A scaled prototype of the Level 1 RTES/BTeV environment was presented
at the SuperComputing 2003 (SC2003) conference [24]. Reactive and proactive
VLA rules were integrated within this Level 1 prototype and served a primary
role in demonstrating the embedded fault tolerant capabilities of the system.

Since the physics application (PA) at the worker level is responsible for the
critical overall objective of Level 1 data filtering, it is extremely important that
DSP usage by the VLA at the worker level is minimal, and only occurs either
when the PA is not utilizing the DSP, or when emergency fault mitigative ac-
tion is required. For this reason, the prototype worker VLA is implemented as an
Interupt Service Routine (ISR) that is triggered only when expected PA process-
ing time thresholds are exceeded. The TI T6711 DSP processor used within the
prototype has 15 hardware interrupts (HWIs). HWI 15 is assigned Timer 1, and
HWI 14 is assigned Timer 0. The VLA prototype uses HWI 15 (Timer 1).

A list of ten possible BTeV error scenarios, along with a list of associated
likely causes, is listed in Tab. 1. One of the fault scenarios modeled within the
prototype occurs when the DSP is found to be over the estimated time budget on
crossing processing (e1). In this scenario, HWI 15 (Timer 1) is used by the VLA
to monitor PA crossing processing times, and trigger the VLA ISR if the time
threshold is exceeded. At the start of processing each crossing, the PA provides
the VLA with a time estimate as to the maximum time that it should take to
process the current crossing. The Timer 1 Period Register (T1PR) is assigned
this estimated value, and timer counting is enabled. If the PA completes crossing

Environment Organization of Roles Using Polymorphism 257

Table 1. List of 10 BTeV error scenarios, along with list of associated likely causes

e1 DSP over time budget on crossing
processing.

Crossing was too complex to complete and
developer was not careful to give up in time.

e2 PA is stuck in a loop (within soft-
ware timer control).

Improper error handling caused the pro-
gram to go into an infinite loop.

e3 DSP application enters a loop
(outside of software timer control).

Logic error in code that manipulates the
boards communications facilities.

e4 DSP application branches to an il-
legal instruction.

Logic error any place in the code that
causes corruption of memory.

e5 Processing times per crossing are
too long.

SAF reported crossing processing times are
consistently falling out of range.

e6 Too many track segments. Not
necessarily a fault at the source.

The front-end hardware is malfunctioning;
more particles collided than can be man-
aged; bug in the upstream algorithms.

e7 Corrupt data in a crossing (trun-
cated, misaligned, or bad header).

Bad checksum or incorrect header data in a
crossing due to transmission failure or up-
stream logic error.

e8 Corrupt data - no such channels in
the detector.

Logic error in front-end electronics or
firmware (byte swapping).

e9 Crossing data lost. DSP was reset or reboot while an event was
being processed; FPGA input queue over-
flow; FPGA output queue overflow.

e10 Failed to transfer results down the
DSP L1 buffer link (buffer ready
flag not set in time).

The level-1 buffers were not ready to receive
data; the farmlet output queues overflowed.

processing as expected prior to the timer expiring, then the timer is stopped and
reset when the PA begins processing the next crossing. If on the other hand, the
timer expires before the PA has completed processing, then the VLA ISR is
called. The first time that the VLA ISR is triggered, the VLA notifies the PA
of the time threshold violation, and resets the timer for a set grace period. The
PA then attempts to cleanup any remaining processing that it has to complete.
If successful, the PA stops the timer, and continues on to the next crossing. If
the cleanup is unsuccessful, the VLA ISR is again called, and this time, it either
attempts to reset the PA itself (if it has authority), or sends communication up
to the next level of VLA (in this case the Farmlet VLA) for remedial action.

In addition to taking direct fault mitigative actions on various system com-
ponents, multiple layers of VLAs are also responsible for communicating specific
error messages to higher layers within the system.

2.5 Challenges

While the SC2003 prototype was effective for demonstrating the real-time fault
mitigation capabilities of VLAs on limited hardware utilizing 16 DSPs, one
of the major challenges is to find out how the behavior of the various lev-
els of VLAs will scale when implemented across the 2500 DSPs projected for

258 D. Messie and J.C. Oh

RTES/BTeV [25]. In particular, how frequently should these monitoring tasks
be performed to optimize processing time, and what affect does this have on
other components and the overall behavior of a large-scale real-time embedded
system like RTES/BTeV.

Given the number of components and countless fault scenarios involved, it is
infeasible to design an ‘expert system’ that applies mitigative actions triggered
from a central processing unit acting on rules capturing every possible system
state. Instead, a distributed approach using self-organizing VLAs accomplishes
fault mitigation within the large-scale real-time RTES/BTeV environment.

2.6 SWARM

SWARM (http://www.swarm.org), distributed under the GNU General Public
License, is software available as a Java or Objective-C development kit that
allows for the multi-agent simulation of complex systems [26, 27]. It consists of
a set of libraries that facilitate implementation of agent-based models. SWARM
has previously been used by the RTES team in simulations that model the
RTES/BTeV environment [28].

3 Polymorphic Agents

3.1 A Working Definition

Some initial supporting terminology from the field of multi-agent systems will
first be reviewed before a definition for polymorphic agents is presented:

Agent -
Finding a single universally accepted definition of an agent has been as difficult
for the agent-based computing community, as defining intelligence has been for
the mainstream AI community [29]. However, a few of the core properties of
agents that have been widely accepted include :

– autonomy: agents operate without the direct intervention of humans or oth-
ers, and have some kind of control over their actions and internal state;

– social ability: agents interact with other agents;
– reactivity: agents respond to changes in their environment;
– pro-activeness : agents exhibit goal-directed behavior.

The VLAs embedded within each of the DSPs in the RTES/BTeV environ-
ment possess each of these core properties.

Environment -
Similarly, robust definitions of environments in multi-agent systems can be even
more challenging to find than those for agents. In very general terms, environ-
ments ‘provide the conditions under which an entity (agent or object) exists’ [3].

A growing amount of research has turned attention to the role of the envi-
ronment in system design. The recognition is that the distributed AI community

Environment Organization of Roles Using Polymorphism 259

has failed to treat the environment as a first-class entity [30]. Here, a first-class
entity is seen as an independent piece of software which provides an abstraction
that can be modified without requiring a change to other software components.
The approach presented in this paper implements the environment as a first-
class entity responsible for indirect communication between agents.

Roles -
In multi-agent systems, roles are generally viewed as ‘an abstract representation
of an agents function, service, or identification within a group’ [31]. A role can
be viewed as a class that defines some normative behavioral repertoire of an
agent [32]. They provide both the building blocks for agent social systems and
the requirements by which agents interact.

Roles are derived from the functional requirements of the system, and act to
link agents together. They define a set of actions that are permitted for a certain
class of agents. For example, an agent that is assigned the role of a customer
may request a certain set of goods, but not supply them. An agent assigned the
supplier role on other hand, has the opposite requirements.

A single agent may be assigned multiple roles, and can change roles as condi-
tions warrant. Roles are found in countless different forms for grouping tasks or
responsibilities. In database systems, roles are assigned to individual users (or
groups of users) as a way to allow access to certain categories of information. For
example, a role may be created that allows read-write access to a set of three
specific accounting tables. Individual users that are assigned this role, then have
read-write access to those tables. Other users that are not assigned this role, will
not have access to the tables.

In autonomous robots, roles are assigned to different components of the sys-
tem as a way to compartmentalize tasks required for the overall desired behavior
of the system. A single sensor on the base of the robot may be responsible for
avoiding objects, while a sound recognition system may simultaneously move the
robot towards music playing in another room.

In the RTES/BTeV environment, roles are used to group together related
fault mitigation tasks. Individual VLAs adapt the set of roles for which they
are responsible as environmental conditions change. For example, as described
in more detail below, a single VLA may be primarily responsible for one set of
fault mitigation tasks (role A) at one moment, and responsible for a completely
different set (role B) shortly later in time.

Research concerning other static definitions for roles, role formation and con-
figuration, and the dynamic interactions among roles have been examined quite
extensively in recent years [33, 34, 35].

Polymorphic Agents -
As described earlier, polymorphism is defined in biology as:

‘the occurrence of different forms, stages, or types in individual organisms or in
organisms of the same species, independent of sexual variations’ [10, 11].

260 D. Messie and J.C. Oh

For the definition of polymorphic agents in multi-agent systems proposed in
this paper, organisms are replaced by agents, and agent roles (function, service,
or identification) are used in place of forms, stages, and types of organisms. The
environment in this new definition in many ways remains unchanged.

This leads to the following working definition for polymorphic agents within
the field of multi-agent systems:

‘Individual agents within groups of similar or identical agents that are capable
of adapting roles based on their perceived environment.’

Polymorphic VLAs are described in detail in the next section.

3.2 Design Overview

This paper introduces a stigmergic multi-agent systems approach that uses poly-
morphic self-* agents to address the weaknesses inherent in traditional hierarchi-
cal fault mitigation designs. Rather than hard-wiring the assignment of FVLA
roles to specific VLAs embedded within individual DSPs, VLAs are made poly-
morphic so that every VLA is equipped to play the role of FVLA for any DSP
on the same node.

Since the FVLA is responsible for a wide range of monitoring tasks, this
means that we must build the capability of performing each task into every
Worker Level VLA. The classic problem this presents in traditional hierarchical
approaches is how to process all of the data necessary for all of these tasks in
time for a useful response [29]. However, since these agents are polymorphic and
evolve roles gradually over time, there is only a small set of tasks for which each
agent is responsible for at any given point in time.

Stigmergy is used to determine which set of tasks any given VLA performs.
Errors found (or not found) in the environment by an individual VLA increase
(decrease) the sensitivity of that VLA to that particular type of error. Agents
start out by monitoring each type of error at a fixed rate. Then, based entirely
on what is encountered in the environment, each develops a core set of roles for
which it takes responsibility. For example, a single VLA embedded within a DSP
monitors each particular error at some unique rate. When an individual VLA
performs a monitoring task on some DSP, it either finds an error and performs
mitigative action, or does not find an error and does nothing. If it finds an error,
it increases its own sensitivity to that type of error on the corresponding DSP.
If it does not find an error, its sensitivity to the error decreases slightly. Results
show how, over time, this produces an optimal distribution of monitoring tasks
across all VLAs, with each VLA evolving responsibility for a unique core set of
monitoring tasks.

The overall emergent behavior of this design results in self-organization of
FVLA responsibilities based on the state and workload of all DSPs within the
node. A certain set of VLAs may perform specific FVLA tasks at one moment,
and another set (which may or may not include VLAs from the original set)
can be found performing these same tasks later in time. The organization occurs

Environment Organization of Roles Using Polymorphism 261

automatically within the system as environmental cues fluctuate. This eliminates
the financial and efficiency costs associated with having specialized FVLAs that
at times sit idle as Worker DSPs operate at full capacity and fall behind on event
processing. It also increases the efficiency of Worker DSPs that may be wasting
idle time when crossing processing rates are low. In effect, a fully connected
network of FVLAs is created that continue to provide effective fault mitigation
when exposed to a high volume of system failures.

There are two key characteristics of this model. The first is that it requires no
central management or global processing. Second, it is optimally reliable since
FVLA monitoring tasks are distributed across all DSPs, and can be adapted
based on changes in the environment. The next section explains implementation
details on how each individual agent uses only cues from the environment to
determine necessary actions.

3.3 Utility Value Drives Real-Time Scheduling

As described above, distributed VLAs within Worker level DSPs are used to
accomplish the fault monitoring tasks that the FVLA is responsible for. However,
these are the same DSPs that are responsible for the critical overall objective
of Level 1 physics application (PA) data filtering [19]. It is therefore extremely
important that DSP usage by each Worker VLA is minimal, and only occurs
either when the PA is not fully utilizing the DSP, or when critical fault mitigative
action is required.

Game theory has been applied to a wide range of problems, and is used here
to coordinate the amount of DSP clock cycle that is allocated between the PA
and the VLA. Both the PA and VLA wish to maximize the number of clock
cycles during which they have control. If the VLA takes too many DSP cycles,
then the PA will be unable to process the incoming data at a high enough rate
to prevent the buffers from overflowing, resulting in a loss of data continuity.
This is often fatal for the experiment since this lost data could very well contain
portions of vital characteristics of the physics properties being evaluated. If on
the other hand, the PA takes too many DSP cycles, then it runs the risk that
system faults will go undetected, resulting in acceptance of corrupt data, and/or
incremental bottlenecks that again cause buffer overflows.

An efficient adaptive scheduling algorithm is required that will effectively
establish scheduling priorities between the PA and VLA. Mandatory costs as-
sociated with the Kernel/Command Processor, including clock cycle costs for
context switching must be factored in. An analysis of the worst-case behavior of
tasks (both VLA and PA) can be done to determine the amount of time that
must be allotted to each process. However, there must be a way for the system
to adaptively modify these values when environmental conditions change. That
is, if during every interval T, the HEP applications and the operating system
use TPA and TOS time units, respectively, then the VLA will be allowed to use
T – TPA – TOS every T time units [23].

An analysis of best-case behavior of tasks (VLA and PA) requires the use of
a utility value in order for each DSP to determine locally precisely when the PA

262 D. Messie and J.C. Oh

or VLA should relinquish control [36]. A reward system based on a combination
of the amount of data processed, along with the frequency of VLA maintenance
checks, is used by each DSP for each error in calculating the following local util-
ity value :

DSP Utility Value = Dw−1 + cF−1, where

D = Expected amount of data that DSP could process
during a given time interval (T).

w = Current data buffer watermark.
F = Total number of clock cycles elapsed since last

FVLA check on neighboring DSPs.
c = Adaptive constant representing weight to place on

FVLA checks.

Since the amount of data that any single DSP can process (D) over a given
time interval is fixed, the utility value essentially involves summing the inverse
of the current data buffer watermark (w−1) with a weighted value for the inverse
of the time elapsed since individual FVLA tasks were last performed (F−1).

The task currently active (PA or VLA) calculates the optimum expected
utility value for the DSP at a time interval based on the criticality of each error.
If the active process determines that a higher DSP utility value is received by
remaining active, then the active task will continue. However, if a higher utility
value can be gained by passing control to the currently inactive process, then
that is what does. For example, if the PA is currently active, the input data
buffer for a given DSP is low, and FVLA monitoring responsibilities for a spe-
cific error have not been performed on a particular DSP in a long time, then
the VLA task will be made active. If however, the VLA was currently active un-
der these conditions, then the VLA would simply maintain control for another T
time steps, at which time corresponding utility values would again be calculated.
This is equivalent to determining :

max(w, 2 × ((1 / (1 + e−dF)) - .5)

the maximum value of either w or 2 × ((sigmoid function value for F) - .5).
Here, 2 × ((1 / (1 +e−dF)) - .5) is an adjusted sigmoid function for F which
represent F as a weighted value between 0 and 1.

It is important to note here that the value assigned to d determines the
steepness of the sigmoid function, and hence the sensitivity of the agent to a
given error. In other words, the higher the value of d, the higher the adjusted
sigmoid value of F, and the higher the sensitivity (the frequency of checks) of
the VLA to a particular error.

This is where the polymorphic behavior of the VLA is introduced. Any time
that an individual VLA finds a specific error while performing FVLA monitoring
tasks, the d value for that error on that particular node is increased. Any time

Environment Organization of Roles Using Polymorphism 263

that an individual VLA performs a monitoring task and does not find an error,
the d value is slightly decreased.

A high value for F means that FVLA tasks are performed more frequently
(high sensitivity), whereas a low value for F means they are performed less
often (low sensitivity). The PA is passed (or maintains) control if w is higher
than this adjusted sigmoid function value for F, otherwise the VLA is passed
(maintains) control. For example, if the PA is currently active, the input data
buffer watermark for a given DSP is about half full (w=.5), and FVLA functions
have recently been performed (the adjusted sigmoid function value for F is, say,
.15) then the PA will remain active.

4 Results

SWARM simulates Farmlet data buffer queues that are populated at a rate
consistent with the behavior of the incoming physics crossing data. Each DSP
within a given Farmlet processes a fixed amount of data at each discrete time
step. Three distinct types of errors are introduced randomly within each Worker
DSP at a variable rate using a Multiply With Carry (RWC8gen) random number
generator with a fixed seed. Any time a software or hardware error is encoun-
tered within the simulation, the processing rate for that DSP decreases a set
amount depending on the type of error. The error is cleared when any DSP
within the same Farmlet performs FVLA checks against the DSP for the error
type present. However, there is a time cost associated with performing these
checks. As detailed above describing the self-organizing model, the DSP must
decide whether or not it is worth taking time to perform FVLA monitoring tasks
against neighboring DSPs. If checks are performed too frequently, then the time
available for data crossing processing is limited. On the other hand, if they are
not performed frequently enough, then the chance that other DSPs within the
same Farmlet are experiencing errors is high. As described, a high error rate will
also lead to slow processing rates.

The formula designed for these experiments calculates the frequency of per-
forming FVLA tasks for neighboring DSPs as a sigmoid function adjusted to a
value between 0.0 and 1.0. The fullness of the crossing data buffer queue is also
a value between 0.0 and 1.0 representing the data watermark percentage. These
two values are weighed against each other, and the DSP makes a decision on
where to devote its energy as described earlier.

The decision of whether the VLA or PA has control of the DSP is made by each
DSP at each time step in the SWARM simulation. In this way, the monitoring
tasks required by the environment are always met, but not necessarily by one (or
a few) designated DSPs. Instead, these tasks are performed by any polymorphic
DSP within the Farmlet as dictated by the changing needs of the environment.

Currently, a relatively rudimentary method is used to adapt the d-value (sen-
sitivity) of each agent to a particular type of error. The approach relies only on a
very limited amount of local information that is gathered from the environment
at the time FVLA monitoring tasks are performed. The DSPs themselves self-
organize as different DSPs within the Farmlet take on the necessary monitoring

264 D. Messie and J.C. Oh

tasks at different points in time as required by the environment. If a DSP per-
forms FVLA monitoring tasks for a given type of error on a neighboring DSP,
it will either determine that the error is not present, or it will find the error
and perform the designated mitigative actions. In the case where an error is
found, the d-value for that particular error on the specific DSP is increased. As
described in detail earlier, this essentially increases the sensitivity of the VLA
for this type of error. On the other hand, if no error is found, then the d-value
(sensitivity) is slightly decreased.

As detailed next, Fig. 4 shows how the local action performed by each VLA
over a short period of time results in VLAs evolving responsibility for a core set
of fault monitoring tasks. Over the 100000 time steps for which the SWARM
simulation is run, the 5 VLAs (1 per DSP) can be seen taking on distinct roles
that lead to an efficient global fault mitigation strategy for monitoring errors on
DSP1. These roles are evolved using local information only, and rely on stigmergy
within the environment for indirect coordination with other VLAs.

The simulation fluctuates the error rate at various intervals in order to
demonstrate the affect changes in error rate can have on polymorphic behav-
ior. A moderate error rate (5 x 10−4) is used for the first 35000 time steps, a low
error rate (5 x 10 −6) for the next 35000 time steps (35001-70000), and the last

Fig. 4. The VLA d-value (sensitivity) for 3 distinct error types (e1, e2, e3) being
monitored on DSP1. Each of the 5 graphs represent the d-value adapted over time by
each of the remaining 5 DSPs (DSP2 - DSP6) on the same Farmlet. The simulation
fluctuated the error rate between a moderate rate (5 x 10−4) for the first 35000 time
steps, a low rate (5 x 10−6) for the next 35000 time steps (35001 - 70000), and a high
rate (5 x 10−3) for the last 30000 time steps (70000 - 100000).

Environment Organization of Roles Using Polymorphism 265

30000 time steps (70001-100000) use a high rate (5 x 10 −3). Fig. 4 shows how
all of the VLAs are able to adjust sensitivity to errors on DSP1 based on these
fluctuating error rates over time. For example, the d-value (sensitivity) to indi-
vidual errors on DSP1 for all 5 VLAs (embedded within DSP2 - DSP6) can be
seen dropping starting around time step 35000, and then increasing dramatically
again at time step 70000 during the significant increase in error rate.

Polymorphism is demonstrated clearly in Fig. 4 which displays the VLA
d-value (sensitivity) for 3 distinct error types being monitored on DSP1 within
a single Farmlet. The d-values evolved by each of the VLAs within the 5 DSPs
(DSP2-DSP6) monitoring DSP1 within the same Farmlet are shown. When the
error rate is high (from time steps 70000-100000), the VLAs embedded within
DSP3 and DSP6 develop a high sensitivity for error type 1 (e1), while the sen-
sitivity for e1 of the VLAs in the remaining DSPs remains low. Similarly, the
VLAs on DSP2 and DSP5 have a high sensitivity for error type 2 (e2), and VLAs
for DSP2 and DSP3 are highly sensitive to e3.

The moderate error rate used for the first 35000 time steps reveals additional
polymorphic characteristics of this approach. Here, the error rate is not quite
high enough for any single VLA to evolve long term responsibility for an indi-
vidual error type on DSP1. Instead, 1 or 2 VLAs can be seen monitoring a single
error type at one moment, and then a separate VLA (or group of VLAs) can be
seen monitoring the same error type a short time later. This is due to the fact
that the error rate is too low to stimulate high sensitivity in a single VLA. Sen-
sitivity for the error type drops to a level comparable with other available VLAs
on the Farmlet. For example, the VLAs on DSP 3 and DSP 4 develop a modest
level of sensitivity for e1 early on (time steps 0-15000), but the role is taken over
by VLAs on DSP 5 (time steps 15000-28000) and later DSP6 (28000-35000).

Fig. 5. Average number of crossings processed per DSP resulting from the stigmergic
approach using polymorphic agents(adaptive), compared against the same simulation
using a fixed monitoring rate (d-value fixed at .01)

266 D. Messie and J.C. Oh

Fig. 5 shows the average data processing rate per DSP for the stigmergic
approach using polymorphic agents, as compared to the same simulation using
a fixed monitoring rate (d-value fixed at .01) for each agent. The polymorphic
agents in the stigmergic approach adapt an optimum monitoring rate for each
error based strictly on the demands of the environment at any given time. This
results in a higher number of crossings processed since, as described in detail ear-
lier, less time is wasted performing needless monitoring tasks or missing critical
errors.

5 Next Steps

The next phase of this project will expand the number of different types of errors
handled, along with the amount of fluctuation in error rates. It will also focus
further on how sensitivity (d-value) is adapted for each VLA. Currently, a rudi-
mentary method is used that slightly increases (or decreases) sensitivity based on
the presence (or absense) of an error. Other variables could be considered in deter-
mining the amount of change to apply, such as factoring in the severity level of the
error, or looking at the consequences of other recently taken actions. An enhanced
evaluation methodology to better demonstrate the performance advantage of this
approach as compared to other traditional methodologies is also necessary.

Another issue being investigated is how to handle communication between
agents when one agent has information that may be relevant to other agents,
but it does not know to which other agent the information is relevant. This
is a problem encountered in many large-scale multi-agent systems [15], and is
especially an issue in fault mitigation where trends in information received across
agents can provide valuable warning signs.

At the same time, another scaled prototype of the actual projected RTES/
BTeV software and hardware environment based on the SC2003 demonstration
system is also being developed, and will integrate the VLA self-* model. This
prototype will be presented at the 2nd Workshop on High-Performance Fault-
Adaptive Large-Scale Embedded Real-Time Systems (FALSE-II) in the IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS05).

As described earlier, the design and implementation of the SC2003 prototype
was an important step for RTES in showing the integration of many of the com-
ponent designs and tools that have been developed across the collaboration. Each
of the teams within the collaboration have been able to take away some valuable
lessons learned that will be incorporated into the development process moving
forward. In addition to addressing these lessons, there are many other challeng-
ing goals that RTES has set. The next phase of modeling tools are also being
developed that will further support component design and implementation.

6 Conclusion

This paper has described a multi-agent systems design approach that uses the
environment to facilitate organization and coordination of agents. It details a
fully distributed stigmergic approach to fault mitigation in large-scale real-time

Environment Organization of Roles Using Polymorphism 267

systems using lightweight, polymorphic, self-* agents embedded within individ-
ual DSPs. Stigmergy facilitates indirect communication and coordination be-
tween agents using cues from the environment, and concepts from game theory
and polymorphism allow individual agents to evolve a core set of roles for which
it is responsible. Agents adapt these roles as environmental demands change.
The approach is implemented on a SWARM simulation of BTeV, a High Energy
Physics experiment consisting of 2500 DSPs.

Results demonstrate the polymorphic nature of the agents, and display the
performance and reliability advantages of this approach. The next phase of this
project will increase the number of possible error types, and add more fluctuation
to individual error rates.More sophisticated ways of adapting error sensitivity
among agents will also be investigated, along with more elaborate performance
evaluation metrics.

Acknowledgements

The research conducted was sponsored by the National Science Foundation in
conjunction with Fermi National Laboratories, under the BTeV Project, and in
association with RTES, the Real-time, Embedded Systems Group. This work
has been performed under NSF grant # ACI-0121658.

References

1. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next century challenges:
Scalable coordination in sensor networks. In: Mobile Computing and Networking.
(1999) 263–270

2. Brazier, F., Mobach, D., Overeinder, B., Wijngaards, N.: Supporting life cycle
coordination in open agent systems (2002)

3. Weyns, D., Dyke, H.V., Michel, F., Holvoet, T., Ferber, J.: Environments for
Multiagent Systems, State-of-the-art and Research Challenges, Post-proceedings of
the First International Workshop on Environments for Multiagent Systems, Lecture
Notes in Computer Science Series, Volume 3374 (2005)

4. Dowling, J., Cunningham, R., Curran, E., Cahill, V.: Component and system-
wide self-* properties in decentralized distributed systems, Self-Star: International
Workshop on Self-* Properties in Complex Information Systems, University of
Bologna, Italy (2004)

5. Li, Z., Liu, H., Parashar, M.: Enabling autonomic, self-managing grid applications
(2004)

6. DeWolf, T., Holvoet, T.: Emergence Versus Self-Organisation: Different Concepts
But Promising When Combined, Engineering Self Organising Systems: Methodolo-
gies and Applications (Bruecker, S. and Di Marzo Serugendo, G. and Karageorgos,
A. and Nagpal, R., eds.). Lecture Notes in Artificial Intelligence vol. 3464 (2005)

7. Serugendo, G.D.M., Karageorgos, A., Rana, O., Zambonelli, F.: Engineering Self-
Organising Systems, Nature-Inspired Approaches to Software Engineering, Work-
shop on Engineering Self-Organising Applications (ESOA), in the International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS) (2003)

268 D. Messie and J.C. Oh

8. Ridge, E., Kudenko, D., Kazakov, D., Curry, E.: Moving Nature-Inspired Algo-
rithms to Parallel, Asynchronous and Decentralised Environments, International
Conference on Self-Organization and Adaptation of Multi-agent and Grid Systems
(SOAS05) (2005)

9. Timmis, J., de Lemos, R., Ayara, M., Duncan, R.: Towards Immune Inspired Fault
Tolerance in Embedded Systems, Proceedings of 9th International Conference on
Neural Information Processing (2002) 1459–1463

10. Wilson, E.O.: The Origin and Evolution of Polymorphism in Ants. Quarterly
Review of Biology 28 (1953) pages 136–156

11. Law, J.H., Wilson, W.O., McCloskey, J.: Biochemical Polymorphism in Ants.
Science 149 (1965) pages 544–6

12. Wheeler, D.E.: Developmental and Physiological Determinants of Caste in Social
Hymenoptera: Evolutionary Implications. American Naturalist 128 (1986) pages
13–34

13. Josuttis, N.M.: Object Oriented Programming in C++. John Wiley & Sons; 1st
edition (2002)

14. Barbat, B., Zamfirescu, C.: Polymorphic Agents for Modelling E-Business Users,
International NAISO Congress on Information Science Innovations, Symposium on
E-Business and Beyond (EBB), Dubai (2000)

15. Scerri, P., Vincent, R., Mailler, R.: Comparing Three Approaches to Large Scale
Coordination, Proceedings of the First Workshop on the Challenges in the Coordi-
nation of Large Scale Multi-agent Systems, in the 3rd International Joint Confer-
ence on Autonmous Agents and Multi-Agent Systems (AAMAS), New York, NY
USA (2004)

16. Grassé, P.P.: La reconstruction du nid et les coordinations inter-individuelles chez
Bellicosi-termes natalensis et Cubitermes sp. La theorie de la stigmergie: Essai
d’interpretation des termites constructeurs. Insectes Sociaux 6 (1959) pages 41–83

17. Caro, G.D., Dorigo, M.: Ant Colonies for Adaptive Routing in Packet-Switched
Communications Networks. Lecture Notes in Computer Science 1498 (1998) 673–
683

18. Dorigo, M., Stotzle, T.: Ant Colony Optimization. Bradford Books (MIT Press)
(2004)

19. Kwan, S.: The BTeV Pixel Detector and Trigger System, FERMILAB-Conf-02/313
(2002)

20. Cristian, F.: Abstractions for fault-tolerance. In Duncan, K., Krueger, K., eds.:
Proceedings of the IFIP 13th World Computer Congress. Volume 3 : Linkage and
Developing Countries, Amsterdam, The Netherlands, Elsevier Science Publishers
(1994) 278–286

21. Heimerdinger, W., Weinstock, C.: A conceptual framework for system fault toler-
ance. Software engineering institute, carnegie mellon university, cmu/sei-92-tr-33,
esc-tr-92-033 (October, 1992)

22. et. al, J.B.: Fault Tolerant Issues in the BTeV Trigger, FERMILAB-Conf-01/427
(2002)

23. Oh, J., Mosse, D., Tamhankar, S.: Design of Very Lightweight Agents for Reac-
tive Embedded Systems, IEEE Conference on the Engineering of Computer Based
Systems (ECBS), Huntsville, Alabama (2003)

24. Messie et al., D.: Prototype of Fault Adaptive Embedded Software for Large-
Scale Real-Time Systems, 2nd Workshop on Engineering of Autonomic Systems
(EASe), in the 12th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems (ECBS), Washington, DC USA (2005)

Environment Organization of Roles Using Polymorphism 269

25. Kowalkowski, J.: Understanding and Coping with Hardware and Software Failures
in a Very Large Trigger Farm, Conference for Computing in High Energy and
Nuclear Physics (CHEP) (2003)

26. Burkhart, R.: Schedules of Activity in the SWARM Simulation System, Position
Paper for OOPSLA Workshop on OO Behavioral Semantics (1997)

27. Daniels, M.: An Open Framework for Agent-based Modeling, Applications of Multi-
Agent Systems in Defense Analysis, a workshop held at Los Alamos Labs (2000)

28. Messie, D., Oh, J.: SWARM Simulation of Multi-Agent Fault Mitigation in Large-
Scale, Real-Time Embedded Systems, High Performance Computing and Simula-
tion (HPC&S) Conference, Magdeburg, Germany (2004)

29. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice.
HTTP://www.doc.mmu.ac.uk/STAFF/mike/ker95/ker95-html.h (Hypertext ver-
sion of Knowledge Engineering Review paper) (1994)

30. Weyns, D., Schumacher, M., Ricci, A., Viroli, M., Holvoet, T.: Environments for
Multiagent Systems. Knowledge Engineer Review to appear (2005)

31. Odell, J., Parunak, H., Fleischer, M., Breuckner, S.: Modeling Agents and their
Environment. Lecture Notes in Computer Science 2585 (2002) pages 16–31

32. Odell, J., Parunak, H., Breuckner, S., Fleischer, M.: Temporal Aspects of Dynamic
Role Assignment. Lecture Notes in Computer Science 2935 (2004)

33. Ferber, J., O. Gutknecht, e.a.: Agent/Group/Roles: Simulating with Organizations,
Fourth International Workshop on Agent-Based Simulation (ABS), Montpellier,
France (2003)

34. Castelfranchi, C.: Engineering Social Order. Engineering Societies in the Agent
World 1972 (2000) pages 1–18

35. Parunak, H., Odell, J.: Representing Social Structure using UML, Proceedings of
the Agent-Oriented Software Engineering Workshop, in the Agents 2001 Confer-
ence, Montreal, Canada, Springer (2001)

36. Rapoport, A., Zwick, R.: Game Theory. In A.E. Kazdin, Encyclopedia of Psychol-
ogy (pp. 424-426). New York: Oxford University Press (2000)

Testing AGVs in Dynamic Warehouse Environments

Alexander Helleboogh, Tom Holvoet, and Yolande Berbers

AgentWise, DistriNet, Department of Computer Science K.U. Leuven University, Belgium
{Alexander.Helleboogh, Tom.Holvoet,

Yolande.Berbers}@cs.kuleuven.be

Abstract. Automatic Guided Vehicles (AGVs) are unmanned vehicles that can
transport loads in a warehouse. AGVs are instructed by on-board AGV control
software. As multiple AGVs operate in a decentralized manner in the warehouse
environment, conflicts may arise. Consequently, it is crucial to test thoroughly
whether the AGV control software actually handles the potential conflicts in the
appropriate way.

In this paper, we employ a simulated warehouse environment to test the AGV
control software. The AGV control software is embedded and activated in the
simulated warehouse environment. The simulated warehouse environment pro-
vides support for testing by means of (1) representing dynamism in the ware-
house environment in an explicit manner, and (2) detecting conflicts of dynamism
in an automated way. The approach is illustrated for the case of testing collision
avoidance.

1 Introduction

Since March 2004 the AgentWise research group is involved a joint R&D project, called
Egemin Modular Controls Concept (EMC2) in cooperation with Egemin, an indus-
trial expert in automating warehouse transportation systems [1]. An AGV transporta-
tion system is an industrial transport system using several automatic guided vehicles
(AGVs). Typical applications are repackaging and distributing incoming goods to var-
ious branches, or distributing manufactured products to storage locations. An AGV is
an unmanned, computer-controlled transportation vehicle using a battery as its energy
source. AGVs have to perform transports. A transport consists of picking up a load
at a particular spot in the warehouse and bringing it to its destination. Transports are
generated by client systems, for example business management programs, particular
machines, employees or service operators.

Traditionally, AGVs in a warehouse are directly controlled by a central server.
AGVs have limited autonomy: the server plans the schedule for the system as a whole,
dispatches commands to the AGVs and continually polls their status. This system archi-
tecture has successfully been deployed in numerous practical installations. The central-
ized server architecture has two main benefits. The control software can be customized
easily to the needs of a particular project, since the server is a central configuration
point. This allows for specific per-project optimizations. A second benefit is that the
system is deterministic and predictable.

D. Weyns, H. Van Dyke Parunak, and F. Michel (Eds.): E4MAS 2005, LNAI 3830, pp. 270–290, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Testing AGVs in Dynamic Warehouse Environments 271

In the EMC2 project, we are investigating the feasibility of a decentralized system
architecture [2, 3] to improve the flexibility of the system. We use concepts from situ-
ated multi-agent systems (situated MAS) [4]. In our approach, each AGV is controlled
by a situated agent. The agents cooperate to ensure the functionality of the system. In
contrast to the centralized server architecture, each agent of the situated MAS takes
decisions based on local information only. Situated agents deal with opportunities and
tackle problems in a decentralized manner.

The warehouse environment the agents are situated in, is inherently dynamic. It con-
tains different AGVs that are constantly driving around, sending messages and manip-
ulating loads. Consequently, conflicts may arise locally between different AGVs each
acting autonomously. Examples of conflicts are collisions between AGVs and commu-
nication loss because of congestion of the communication channel.

It is evident to test the situated agents thoroughly before they are deployed on real
AGVs. In decentralized systems, testing is necessary to determine whether the situated
agents actually handle potential conflicts in the appropriate way. Formal approaches
are practically infeasible to verify the behavior of decentralized systems [5], such as a
situated MAS. This emphasizes the importance of simulation as a means to verify the
behavior of decentralized systems [6, 7].

In this paper, we employ a simulated warehouse environment to test the situated
agents that control the AGVs. The simulated warehouse environment is a model of the
real warehouse environment, and contains simulated AGVs. The agents are tested by
deploying and activating them in the simulated environment [8]. The simulated ware-
house environment facilitates testing by offering a means to (1) represent dynamism in
the warehouse environment in an explicit manner, and (2) detect conflicts of dynamism
in an automated way. The approach is illustrated for the case of testing collision avoid-
ance between AGVs in the presence of unreliable communication.

The remainder of this paper is structured as follows. In Sect. 2, we elaborate on the
real warehouse environment. In Sect. 3, we describe the model of the simulated ware-
house environment that was developed to represent the real warehouse environment. In
Sect. 4, we explain how the simulated environment supports testing collision avoidance.
We evaluate the approach in Sect. 5 and draw conclusions in Sect. 6

2 The Real Warehouse Environment

We focus on two parts of the warehouse environment: the warehouse layout and the
AGVs. The warehouse layout is discussed in Sect. 2.1. In Sect. 2.2, we focus on the
architecture of an AGV. Section 2.3 analyzes how collisions can occur in the warehouse
environment. The requirements for avoiding collisions are specified in Sect. 2.4.

2.1 The Warehouse Layout

The warehouse layout typically contains various loads positioned at various locations in
the warehouse. Loads are typically stored in racks. Racks are used to hold loads and are
positioned across the warehouse layout, usually according a geometrical pattern that
combines easy accessibility of the loads, as well as efficient use of the available room

272 A. Helleboogh, T. Holvoet, and Y. Berbers

for storage purposes. Typically, also one or several battery chargers for the AGVs are
positioned at particular locations on the warehouse layout.

To support AGVs, the warehouse layout is usually customized. This typically in-
volves a custom configuration of the racks. In addition, a complex layout of magnet
strips is built into the warehouse floor to guide the AGVs to move from one spot in
the warehouse to another. This magnet track allows AGVs to maneuver in an accurate
manner according to predefined pathways. Moreover, as magnets are inexpensive and
can be installed easily, magnet guided navigation is relatively cost-effective.

2.2 Architecture of an AGV

In Fig. 1, the architecture of an AGV is depicted. Each AGV consists of both hardware
and software. The hardware of an AGV comprises a number of hardware modules. AGV
sensor modules represent the sensors to detect the position and battery level of the AGV.
AGV actuator modules represent the various actuators, such as the engines to move and
the lift to pick loads. The AGV WiFi module represents the wireless communication
infrastructure to send and receive messages. The software of an AGV comprises two
main modules: the AGV controller and the AGV agent.

The AGV agent encapsulates the logic to steer the AGV. The AGV agent uses the
AGV controller to steer the AGV. The AGV controller takes care of all interfacing with
the hardware, and determines the granularity of control that can be used to steer an
AGV.

The granularity of control offered by the AGV controller is determined by a logical
map that is a representation of the magnet track, but is expressed in the AGV controller
in terms of road segments connected by stations:

AGV Controller

AGV
Sensor

AGV
Actuator

AGV
WiFi

AGV Agent

Key:

Hardware Module

Software Module

Information flow

AGV boundary

Agent-environment interface

Warehouse floor

AGV
Sensor

AGV
Sensor

AGV
Actuator

AGV
Actuator

AGV Controller

AGV
Sensor

AGV
Actuator

AGV
WiFi

AGV Agent

AGV
Sensor

AGV
Sensor

AGV
Actuator

AGV
Actuator

Fig. 1. The architecture of AGVs

Testing AGVs in Dynamic Warehouse Environments 273

– Road segments. A road segment corresponds to a particular part of the magnet
track, and has a unique identifier. The granularity of road segments is typically
chosen such that they represent a physical distance of three to five meters. Road
segments can be unidirectional or bidirectional.

– Stations. Stations are the logical nodes at the beginning and end of road segments.
A station corresponds to a particular spot on the magnet track. A station indicates
a special-purpose location for AGVs. A particular station can offer a location for a
subset of the following purposes:

• Routing. A station can serve as a location that connects various road segments
and allows AGVs to choose alternative routes.

• Storage. A station can serve as a location where loads can be picked up or put
down.

• Battery charging. In case a station is positioned at the location of a battery
charger, it can offer an AGV the possibility to charge its battery.

• Parking. A station can serve as a location where AGVs can park temporarily,
e.g. in case there are no more pending transportation tasks.

The AGV controller allows an AGV agent to steer the AGV per segment: the AGV
can stop on every station, where it can be instructed to change direction. The AGV
controller uses the low-level instructions of the hardware of an AGV in order to stay
on the magnet track until the next station is reached. The AGV controller offers the
following actions to steer the AGV:

– move(segment): this instructs the AGV controller to drive the AGV over the
given segment until the next station is reached.

– pick(segment): instructs the AGV controller to drive the AGV over the given
segment and pick up a load at the station at the end of it.

– drop(segment): the same as pick, but drops a load the AGV is carrying.
– park(segment): instructs the AGV controller to drive the AGV over the given

segment and park at the station at the end of that segment.
– charge(segment): instructs the AGV controller to drive the AGV over a given

segment and start charging batteries at the station at the end of that segment.
– sendBroadcast(message): instructs the AGV controller to broadcast a given

message using onboard wireless communication infrastructure.
– sendUnicast(message,receiver): instructs the AGV controller to send a

given message to a given receiver.

Furthermore, the AGV controller can be used to perform the following perceptions
to inspect the status of an AGV.

– getPosition(): instructs the AGV controller to determine the current position
of the AGV. This is the position of a particular reference point situated on the robot.

– getBatteryLevel(): instructs the AGV controller to read out the remaining
energy level of the battery of the AGV.

– getMessage(): instructs the AGV controller to return the next message in the
inbox of the AGV, which contains all messages received.

– isLoaded(): instructs the AGV controller to check whether the AGV is currently
holding a load.

– getAction(): instructs the AGV controller to inspect which action the AGV is
currently performing, i.e. busy driving, picking, dropping or charging.

274 A. Helleboogh, T. Holvoet, and Y. Berbers

2.3 Collisions in the Warehouse Environment

The warehouse environment in which the agents are situated, is highly dynamic. A
dynamic environment is an environment that changes in ways beyond an agent’s control
[9]. Each agent experiences dynamism in the environment, primarily originating from
other AGVs that are constantly driving around, sending messages and manipulating
loads. Consequently, there is the possibility that conflicts arise between AGVs in the
warehouse environment. The conflicts of interest in this paper are collisions of AGVs.

The movement of an AGV on the warehouse floor over a road segment towards
another station can be initiated using a move, pick, drop, park or charge action.
In the dynamic warehouse environment, the movement of an AGV can cause collisions
in the following ways:

– With other AGVs. Although the layout of road segments is static, the traffic load
caused by other AGVs on the layout changes continuously. Consequently, the road
segment over which an AGV is driving can become obstructed because of the move-
ment of another AGV. This can lead to collisions.

– With obstacles. In a warehouse environment, all kinds of obstacles can appear on
the road segments. Examples of obstacles are loads that fall off of AGVs, other
AGVs that are out of order because they have collided, broken down or ran out of
energy. AGVs can collide into obstacles, as obstacles typically hinder passage on
particular road segments.

Agents typically rely on communication to anticipate collisions. However, the
unreliability of the communication channel is an important factor that has to be taken
into account by the agents. The transmission of communication messages can be
initiated by using a sendUnicast or sendBroadcast action. In the dynamic
warehouse environment, the transmission of messages is not reliable and can affected
in the following ways:

– Limited communication range. The AGV’s wireless on-board communication in-
frastructure can only send and receive messages within a limited range. Conse-
quently, communication is affected as soon as AGVs are moving out of each other’s
range.

– Interference of transmission. The transmission of a communication message can be
hindered or delayed by concurrent transmissions of other AGVs within range, or
by external sources working on the same channel.

2.4 Requirements for Avoiding Collisions

For an AGV transportation system, the AGV control software has to adhere require-
ments that specify how AGVs should cope with potential conflicts. We focus on colli-
sion avoidance in the presence of unreliable communication.

The movements of AGVs are not allowed to cause conflicts in the warehouse envi-
ronment. It is required that the situated agents prevent the AGVs from colliding with
each other or with obstacles. The central concept in preventing collisions is the minimal
safety distance. For each AGV, the agent has to maintain a minimal safety distance at all
times with respect to obstacles or other AGVs. This minimal safety distance takes into

Testing AGVs in Dynamic Warehouse Environments 275

account the maximum deviation of an AGV with respect to the path of the magnet strip
it follows. For AGVs the minimal safety distance is typically about 10 centimeters1.
It is physically possible that an AGV can pass at a distance smaller than the minimal
safety distance. However, it is required that the minimal safety distance is respected in
order to guarantee a safe passage at all times.

An important factor that has to be taken into account with respect to collision avoid-
ance, is the unreliability of the communication between AGVs. AGVs are required to
maintain the minimal safety distance, even in the presence of unreliable communication.
A number of quality-of-service attributes specify the worst-case communication char-
acteristics under which correct and safe functioning of the AGVs is required. For the
AGVs, a worst-case quality is typically characterized by about 40 percent message loss
and 2 seconds transmission delay. Safe and normal operation of the AGVs is required
as long as the quality of service is better than the worst-case’s. In case the wireless
communication quality drops beneath the worst-case’s, AGVs are allowed to go into a
safe mode, typically suspending any further movements to prevent unsafe situations.

3 The Simulated Warehouse Environment

In this section, we describe the simulated warehouse environment we have developed.
A simulated environment is a model of the real environment [10]. We first explain how
the situated agents are embedded in the simulated warehouse environment in Sect. 3.1.
Then we describe the model of the simulated warehouse environment. In the model of
the simulated warehouse environment, we make a distinction between two concerns:
state and dynamism. The state (see Sect. 3.2) is concerned with modeling a snapshot
at a particular point in time of all parts that constitute the warehouse environment.
Dynamism (see Sect. 3.3) is concerned with representing in an explicit manner the
evolution of the simulated warehouse environment over time. In Sect. 4, we illustrate
how the model is used to test collision avoidance.

3.1 Embedding Situated Agents in the Simulated Warehouse Environment

From Fig.1, it is clear that agents are software modules that are embedded in physical
AGVs. From the viewpoint of an agent program, all interaction with the environment
is mediated by the interface provided by the AGV controller. Consequently, the simu-
lated warehouse environment has to provide the same interface to the agents. However,
instead of being wired to the AGV controller of a real AGV, the simulated warehouse
environment redirects the agents’ invocations on the interface into actions and percep-
tions performed by a simulated AGV.

Each agent autonomously decides at what time to invoke an action on the AGV
controller. The amount of time it takes an agent to decide upon what to do, results in
a delay for all its subsequent actions. To deduce the precise moment in time an action
is invoked, we need to determine how long an agent has been thinking or waiting. We
developed an approach to map the internal process of an agent to simulation time. The

1 The order of magnitude of numerical data used throughout this paper is based on typical data
from several industrial AGV projects.

276 A. Helleboogh, T. Holvoet, and Y. Berbers

approach relies on aspect weaving to insert all code to maintain, update and synchronize
the logical clocks in a transparent way [11].

3.2 Modeling State

The state of the simulated warehouse environment contains all information to describe
the actual state of affairs in the real warehouse environment at a given point in time.
A state description is always considered at a particular point in time [12]. The state
of the simulated warehouse environment is comprised of environmental entities and
environmental relationships. Figure 2 shows a simplified example of the state of the
simulated warehouse environment at a particular point in time.

Key:

Environmental Entities

21 A

Station

Unidirectional
Road Segment

Nr ID AGV

Bidirectional
Road Segment

Warehouse floor Load

2

Obstacle

Environmental Relations

Contains Relative spatial position

x1

y1

x2

y2

xn

yn

x

y

Fig. 2. The state of the simulated warehouse environment

Environmental Entities. Environmental entities are characterized by their own, dis-
tinct existence in the environment. The following environmental entities of the ware-
house environment are modeled in the simulated environment:

– AGVs. AGVs are characterized by a bounding volume to represent the physical
size, a battery level, an inbox and an outbox for the wireless communication
infrastructure.

– Loads. Loads are characterized by a bounding volume that represents the size of
the load.

– Obstacles. Obstacles are characterized by a bounding volume that represents the
size of the obstacle.

Testing AGVs in Dynamic Warehouse Environments 277

– Warehouse floor. The warehouse floor is characterized by a two-dimensional area
with given size.

– Road segments. The magnet track is modeled in terms of the logical map represen-
tation that is employed by the AGVs, i.e. in terms of road segments and stations.
A road segment can be unidirectional or bidirectional. In the simulated warehouse
environment, each road segment is characterized by a direction and a length.

– Stations. Stations are locations that connect adjacent road segments. Each station
is annotated with the purposes it can be used for, i.e. a location for routing, storage
of loads, parking and/or battery charging.

Environmental Relations. An environmental relation is a particular relation between
several environmental entities that expresses how these entities are related to each other
at a given point in time.

– Spatial relations. All environmental entities are spatially related to each other [13].
The spatial relations of all entities are expressed relative to the warehouse floor,
using a two-dimensional continuous coordinate system.

– Containment relations. Containment relations are used with respect to loads. A
containment relation is used to indicate in an explicit manner whether a specific
AGV is holding a particular load. For example, a containment relation indicates
that a load that is still contained by a particular station and is not yet picked up by
an AGV. As soon as an AGV picks up the load, the containment relation indicates
the load as being contained by that AGV.

3.3 Dynamism

Until now, we focussed on the static description of the simulated environment. We now
elaborate on the way the environment evolves over time.

Dynamism as Activities. Dynamism is the evolution of environmental entities and
environmental relations over time. An example of dynamism in the warehouse envi-
ronment is the movement of an AGV driving over a road segment. In the simulated
warehouse environment, dynamism is represented as a first-order abstraction, by means
of activities [14]. An activity represents a well-specified evolution of a particular envi-
ronmental entity or relation, that happens over a specific time interval. Consequently,
the description of an activity comprises the following:

– A specification of the time interval. Dynamism happens over time. The time interval
of an activity specifies the point in time a particular activity starts and how much
time it takes until the evolution completes. The time interval is custom for each
activity and can be configured in correspondence to the characteristics measured in
the real world.

– The environmental entity or relation involved. Dynamism is related to particular
environmental entities or relations. Consequently, each activity incorporates a de-
scription of the part of the environment it describes the evolution of.

– An evolution strategy. Dynamism evolves in a particular, gradual way. Conse-
quently, each activity incorporates a description of the specific evolution as a func-
tion of time within the time interval of the activity.

278 A. Helleboogh, T. Holvoet, and Y. Berbers

Initiation of Activities. Agents perform actions by invoking methods in the interface of
the AGV controller. The invocations on the AGV controller typically initiate activities
in the simulated warehouse environment. As such, the invocation of a method by the
agent on the interface of the AGV controller, is decoupled from the activity that is
initiated in the simulated warehouse environment as the result of the invocation. The
time at which an agent triggers the AGV controller (see Sect. 3.1) corresponds to the
start of the time interval of the activity it initiates.

Activities in the Simulated Warehouse Environment. In the simulated warehouse en-
vironment, activities are used to represent driving, sending messages, lifting and putting
down loads, charging the battery, etc. We describe the activity that represents the driving
of an AGV in detail:

– DriveActivity. A drive activity represents the driving of a particular AGV.

• Initiation. A drive activity can be initiated in case the agent invokes a move,
pick, drop, park and charge action on the AGV controller.

• Time Interval. The time interval of the drive activity is calculated in terms of
the physical performance of the AGV en the length of the road segment.

• The environmental entity or relation involved. A drive activity describes the
evolution of two parts of the state of the simulated environment: (1) the en-
vironmental relation that describes the position of the AGV on the warehouse
floor and (2) the battery level of the simulated AGV.

T=3 T=5

T=(2 7)

2

Key:

Station

Unidirectional
Road Segment

Nr ID AGV

Bidirectional
Road Segment

Warehouse floor
Drive Activity over
interval (t1 t2)

1
3

2

1
3

A

2

1
3

A

T=t1 T=t2

T=2

T=7

Fig. 3. Example of a drive activity in the simulated warehouse environment

Testing AGVs in Dynamic Warehouse Environments 279

• Evolution strategy. The position of an AGV describes the path over the road
segment. The position changes over time, approximated by a model of a con-
stant velocity of 2 meters each second. However, during the first 4 seconds
of each drive activity, the speed of the AGV increases linearly to represent its
acceleration, whereas during the last 2 seconds, its speed decreases linearly
to represent the AGV’s deceleration. The evolution of the battery level of an
AGV is approximated by a model describing a linear decrease according to the
distance travelled.

In Fig. 3, an example of a drive activity of AGV A over time interval (2 → 7) is
depicted. We depict each drive activity as a hull that wraps the intermediate positions
that are taken by the AGV over time. In Fig. 3, the evolution represented by the drive
activity is illustrated using two snapshots of the state within time interval (2 → 7): at
time T = 3 and T = 5, showing the instant position of the AGV.

4 Testing Collision Avoidance

It is crucial to test whether the situated agents handle collision avoidance as required.
This requires testing whether the AGVs maintain a minimal safety distance at all times,
in the presence of unreliable communication (see Sect. 2.4). In Sect. 4.1, we describe
an example scenario performed by a number of agents in a particular warehouse envi-
ronment. In Sect. 4.2, we focus on how a collision can be detected in an automated way.

4.1 An Example Scenario

In Fig. 4, a fragment of an example layout of a warehouse is depicted. It consists of
10 stations and 12 road segments. Time is expressed in seconds. Initially, 5 AGVs are
positioned as depicted on the upper part of of Fig. 4:

– AGV A is positioned at station 10.
– AGV B is positioned at station 6.
– AGV C is positioned at station 2.
– AGV D is positioned at station 8.
– AGV E is positioned at station 4.

The quality-of-service attributes of the communication are set to the worst-case of
40 percent message loss and 2 seconds transmission delay.

Starting from this initial setup, the agents of the AGVs are embedded in the simu-
lated warehouse environment and activated. During 12 seconds, i.e. over time interval
(0 → 12), agents are allowed to perform a number of actions. The actions performed
by the agents result in activities depicted on the lower part of Fig. 4:

– At time T = 2, the agent of AGV A invokes a move action to drive from station
10 to station 9. This results in a drive activity over time interval
(2 → 10), representing the movement AGV A as a result of the action.

– At time T = 4, the agent of AGV B invokes a move action to drive from station
6 to station 1. This results in a drive activity over time interval
(4 → 9), representing the movement AGV B as a result of the action.

280 A. Helleboogh, T. Holvoet, and Y. Berbers

Key:

Station

Unidirectional
Road Segment

Nr ID AGV

Bidirectional
Road Segment

Warehouse floor
(partial) Drive Activity of AGV X

over interval (t1 t2)

X
T=t1 T=t2

T=0

3

7

1

5

4

9

T=(0 12)
3

2 6

7

1

5

8

4

91
0

A

C

D

8

10

B

62

A

D

BC

B

E

T=2

T=5

T=12

T=7

T=9

T=4

T=9 T=6

T=10T=2

Fig. 4. An example scenario of five AGVs moving through a warehouse

– At time T = 7, the agent of AGV C invokes a move action to drive from station
2 to station 3. This results in a drive activity over time interval
(7 → 12), representing the movement AGV C as a result of the action.

– At time T = 6, the agent of AGV D invokes a move action to drive from station
8 to station 7. This results in a drive activity over time interval
(6 → 9), representing the movement AGV D as a result of the action.

Testing AGVs in Dynamic Warehouse Environments 281

– At time T = 2, the agent of AGV E invokes a move action to drive from station
4 to station 5. This results in a drive activity over time interval
(2 → 5), representing the movement AGV E as a result of the action.

We now focus on detecting whether the minimal safety distance is violated in this
scenario.

4.2 The Collision Detection Law

A collision detection law is a rule that checks whether drive activities proceed safely.
For each drive activity, the collision detection law is able to detect two kinds of inter-
ference: violations of the safety distance by entities that are stationary, and violations
of the safety distance by entities that are non-stationary.

Entities are stationary over a particular time interval in case they are not involved in
any drive activity during that time interval. Otherwise, the entity is non-stationary over
that time interval. Obstacles are always stationary. AGVs are stationary during the time
intervals they are not involved in a drive activity.

A code-fragment of the collision detection law is given in Fig. 5, and will be ex-
plained next.

Detecting Interference with Stationary Entities. We first focus on the case of detect-
ing for a particular drive activity whether it violates the minimal safety distance with
respect to entities that are stationary during the time interval of that activity. The activ-
ity perimeter is central in checking interference. The activity perimeter represents the
safety distance around the aggregate of all intermediate positions of an AGV during a
drive activity as a whole. As an example, consider the drive activity of AGV E in Fig. 4.
The activity perimeter for this drive activity is depicted in Fig. 6.

A necessary condition for a particular drive activity to be safe, is that all entities that
are stationary over the time interval of that activity, have no overlap with the activity
perimeter. This condition is checked in lines 15 to 20 in Fig. 5.

The collision detection law will detect whether stationary entities violate the activity
perimeter. When considering the drive activity of AGV E, it is clear from Fig. 4 that
AGV C and AGV D are the only stationary entities during the time interval (2 → 5). As
AGV C and AGV D are both entirely outside the activity perimeter of the drive activity
of AGV E, stationary entities do not compromise the safety of AGV E.

Detecting Interference with Non-stationary Entities. Until now, we only considered
entities that are stationary during a drive activity. We now focus on the case of detecting
for a particular drive activity whether it violates the minimal safety distance with respect
to entities that are non-stationary during the time interval of that activity. All other
AGVs involved in drive activities during the time interval of the drive activity under
investigation, are non-stationary.

Checking the non-stationary entities is performed in lines 21 to 37 of Fig. 5.
As an example, consider the drive activity of AGV B in Fig. 4. The activity perime-

ter to detect interference with stationary entities is depicted on the left hand side of
Fig. 7. Note that no interference with stationary entities is detected, as no AGV is sta-
tionary during time interval (4 → 9).

282 A. Helleboogh, T. Holvoet, and Y. Berbers

 /**
 * Check the collisions of a given drive activity
 * @param act the drive activity
 * @param entities the entities to check collisions with
 * @return a vector containing the collisions
 */
 public Vector checkCollisions(DriveActivity act, Vector entities){
 Vector result = new Vector();

TimeInterval interval = act.getTimeInterval();
 BoundingBox perimeter = act.getActivityPerimeter();

//a loop to check each entity
 for (int i=0; i < entities.size(); i++)
 {
 Entity ent = (Entity)entities.get(i);
 if (ent.isStationaryDuring(interval))
 { //in case the entity is stationary:
 //do one check for the perimeter of the whole activity
 result.add(checkOverlap(perimeter,
 ent.getBoundingBox(interval.getBegin())));
 }
 else //in case the entitiy is non-stationary
 {

//get all activities of the entity that happen during the interval
 Vector activities = ent.getDriveActivities(interval);

//a loop for each activity of the entity
 for(int j=0; j < activities.size(); j++)
 {
 DriveActivity otherAct = (DriveActivity)activities.get(i);

//test whether the activity perimeters of both activities overlap
 if(checkOverlap(perimeter,otheract.getActivityPerimeter())!=null)
 { //in case the activity perimeters overlap

//take snapshots in the common interval of both activities
TimeInterval common = otherAct.getTimeInterval().getIntersection(interval);

 for(Time t=common.getBegin(); t.before(common.getEnd()); t.increment())
 //do the check for one snapshot

 result.add(checkOverlap(act.getEntityPerimeterAt(t),
 otherAct.getEntityBoundingBoxAt(t)));
 }
 }
 }
 }
 return result;
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Fig. 5. Code fragment of the collision detection law

To determine the safety of a particular drive activity, a detailed investigation of
all non-stationary entities that cross the activity perimeter is needed. In the example
of Fig. 7, the activity perimeter of AGV B overlaps with the drive activity of AGV C.
In Fig. 5, this is checked in line 30. To determine the interference of a particular drive
activity with another drive activity, we only consider the common time interval between
both. In Fig. 5, the common time interval is determined in line 33. In our example of
the drive activities of AGV B and AGV C, the common time interval is (7 → 9). This
is depicted on the right hand side of Fig. 7.

Testing AGVs in Dynamic Warehouse Environments 283

Key:

Station

Unidirectional
Road Segment

Nr ID AGV

Bidirectional
Road Segment

Warehouse floor
(partial) Drive Activity of AGV X

over interval (t1 t2)

X
T=t1 T=t2

5

4

E

T=2

T=5

Activity perimeter

Fig. 6. The activity perimeter of the drive activity of AGV E

T=(4 12)
3

2 6

1
C

T=7

T=12B

T=4

T=9

Key:

Station

Unidirectional
Road Segment

Nr ID AGV

Bidirectional
Road Segment

Warehouse floor
(partial) Drive Activity of AGV X

over interval (t1 t2)

X
T=t1 T=t2

Activity perimeter

T=(7 9)
3

2 6

1B

T=7

T=9

C

T=7

T=9

Fig. 7. The drive activity of AGV B. The activity perimeter is depicted on the left part hand side,
the common time interval with the drive activity of AGV C is depicted on the right hand side.

284 A. Helleboogh, T. Holvoet, and Y. Berbers

Key:

Station

Unidirectional
Road Segment

Nr ID AGV

Bidirectional
Road Segment

Warehouse floor
(partial)

AGV perimeter

T=7
3

2 6

1

B

C

T=8
3

2 6

1

B

C

T=9
3

2 6

1B

C

Fig. 8. Checking the drive activity of AGV B. The check for non-stationary entities over time
interval (7 → 9), on the right of Fig. 7, is analyzed using three state snapshots at T = 7, T = 8
and T = 9.

T=(2 10)

7 8

91
0

A
T=2 T=10

D
T=6T=9

Key:

Station

Unidirectional
Road Segment

Nr ID AGV

Bidirectional
Road Segment

Warehouse floor
(partial) Drive Activity of AGV X

over interval (t1 t2)

X
T=t1 T=t2

Activity perimeter

Fig. 9. The activity perimeter of the drive activity of AGV D

Testing AGVs in Dynamic Warehouse Environments 285

T=(6 9)

7 8

910 A
T=6 T=9

D
T=6T=9

Key:

Station

Unidirectional
Road Segment

Nr ID AGV

Bidirectional
Road Segment

Warehouse floor
(partial) Drive Activity of AGV X

over interval (t1 t2)

X
T=t1 T=t2

AGV perimeter

T=6

7 8

910 A

D

T=7

7 8

910 A

D

T=8

7 8

910 A

D

Fig. 10. The drive activity of AGV D and the drive activity of AGV A over the common time
interval (6 → 9). The interference of both activities is detected using state snapshots at T = 6,
T = 7 and T = 8, at which the safety perimeter of AGV D is violated.

Detecting interference between two drive activities over a common time interval is
done by taking a number of state snapshots, see Fig. 8. For each state snapshot, it is
checked wither the other AGVs is completely outside the safety perimeter of the former
AGV. In case of Fig. 8 this is always the case, so AGV C does not compromise the
safety of the drive activity of AGV B. In Fig. 5, the snapshots over the common time
interval are checked in lines 34 to 37.

A Collision Detection Example. Finally, consider the drive activity of AGV D in
Fig. 4. The activity perimeter is depicted in Fig. 9.

286 A. Helleboogh, T. Holvoet, and Y. Berbers

– Interference with stationary entities. From the activity interference perimeter it is
clear that the drive activity of AGV D does not interfere with any entities that are
stationary.

– Interference with non-stationary entities. The drive activity of AGV A crosses the
activity perimeter. Figure 10 illustrates the analysis of the drive activities of AGV D
and AGV A over their common time interval (6 → 9). In Fig. 10 it is also illustrated
how at time T = 8, AGV A violates the safety perimeter of AGV D.

5 Discussion and Evaluation

We elaborate on two important characteristics of the simulated warehouse environment
we developed: modularity and performance.

5.1 Modularity

Modularity is applied extensively throughout the model of the simulated warehouse en-
vironment. Modularity is crucial as it allows separation of concerns, a ground rule for
decent software engineering. At the highest level of abstraction, the simulated ware-
house environment is decomposed in three modular parts: (1) a representation of the
state of the simulated warehouse environment, (2) a representation of the dynamism
in the simulated warehouse environment and (3) a representation of detection laws de-
scribing rules to detect when the consistency is broken in the simulated warehouse
environment.

At a lower level of abstraction, each of the three modular parts is itself designed in
a modular way.

Modularity of State. The state of the simulated warehouse environment is designed
in a modular way. A distinction is made between environmental entities and environ-
mental relations. For example, spatial relations are easy to manage as they are not scat-
tered throughout the state of environmental entities. As spatial relations are modeled
separately, their representation can evolve without affecting the representation of the
environmental entities.

Modularity of Dynamism. Dynamism is designed in a modular way, clearly separated
from the state. Activities encapsulate all characteristics of a particular kind of dynamism
happening in the warehouse environment. The characteristics of various activities can
be adjusted in a modular way, to suit the characteristics in the real warehouse environ-
ment. For example, the acceleration and deceleration characteristics of an individual
AGV can be adjusted in the evolution strategy, to accurately reflect the performance of
the real AGVs.

Modularity of Detection. The detection laws that check for inconsistencies happening
in the simulated environment are developed in a modular way. Detection laws avoid the
use of a uniform, global granularity that crosscuts the whole simulation. Instead, each
detection law employs its own granularity, customized according to the required accu-
racy to detect particular inconsistencies. For example, detecting collisions can be done

Testing AGVs in Dynamic Warehouse Environments 287

by a collision detection law that uses snapshots with a granularity of 1 second to check
interference with non-stationary entities. Obtaining a higher accuracy of detection in-
volves an adjustment applied locally in the collision detection law, e.g. a change in the
granularity from 1 second to 5 milliseconds.

5.2 Performance of Collision Detection

We now elaborate on the performance of collision detection based on our approach.
We compare the performance of collision detection using a collision detection law
(see Sect. 4.2) with the performance of detecting collisions using a global time step.
As a performance measure, we employ the number of perimeter checks to detect viola-
tions of the safety perimeter.

We compare both approaches using the scenario of Fig. 4. Suppose the required
accuracy to detect perimeter violations is 1 centimeter, and that the maximum velocity
of an AGV is 2 meter per second.

Collision Detection Using a Global Time Step. In this approach, collision detection
happens by evolving the simulation according to a common, system-wide time step. We
first determine the step size to check for perimeter violations with the required accuracy.
Driving at its maximum speed of 2 meters per second, it takes an AGV 5 milliseconds
to move over 1 centimeter. As two AGVs can travel at top speed, their relative position
changes at a maximum rate of 4 meters per second. Consequently, to detect collisions
with an accuracy of 1 centimeter, a perimeter check must happen at least every 2.5
milliseconds. This means 400 perimeter checks are needed to check violations of the
safety perimeter of an AGV driving during 1 second.

We now determine the number of perimeter checks for the scenario of Fig. 4:

– AGV A: to check the drive activity over time interval (2 → 10), 400 ×
8 = 3200 checks are needed with each of the other four AGVs. This results in
3200 × 4 = 12800 checks.

– AGV B: to check the drive activity over time interval (4 → 9), 400 × 5 =
2000 checks are needed with each of the other four AGVs. This results in 2000 ×
4 = 8000 checks.

– AGV C: to check the drive activity over time interval (7 → 12), 400 ×
5 = 2000 checks are needed with each of the other four AGVs. This results in
2000 × 4 = 8000 checks.

– AGV D: to check the drive activity over time interval (6 → 9), 400 × 3 =
1200 checks are needed with each of the other four AGVs. This results in 1200 ×
4 = 4800 checks.

– AGV E: to check the drive activity over time interval (2 → 5), 400 × 3 =
1200 checks are needed with each of the other four AGVs. This results in 1200 ×
4 = 4800 checks.

This means a total of 38400 perimeter checks are needed for the scenario.

Collision Detection Using a Collision Detection Law. We now focus on the number
of perimeter checks using the collision detection law that inspects drive activities. In

288 A. Helleboogh, T. Holvoet, and Y. Berbers

analogy with the previous approach, 400 perimeter checks are needed to check viola-
tions of the safety perimeter of a single AGV driving during 1 second.

We now determine the number of perimeter checks for in case of Fig. 4. The number
of checks needed for each activity is as follows:

– AGV A: checking the drive activity over time interval (2 → 10). There
are no stationary entities during this time interval: all four other AGVs are non-
stationary. Consequently, the activity perimeter check of line 30 in Fig. 5 is per-
formed 4 times. However, only the activity perimeter of the drive activity of AGV
D actually overlaps with the one of AGV A. As the common time interval of
both activities is (6 → 9), the check in the loop at line 36–37 in Fig. 5 is ex-
ecuted 400 × 3 = 1200 times. The total number of perimeter checks needed is
4 + 1200 = 1204.

– AGV B: checking the drive activity over time interval (4 → 9). There
are no stationary entities during this time interval: all four other AGVs are non-
stationary. Consequently, the activity perimeter check of line 30 in Fig. 5 is per-
formed 4 times. However, only the activity perimeter of the drive activity of AGV
C actually overlaps with the one of AGV B. As the common time interval of
both activities is (7 → 9), the check in the loop at line 36–37 in Fig. 5 is ex-
ecuted 400 × 2 = 800 times. The total number of perimeter checks needed is
4 + 800 = 804.

– AGV C: checking the drive activity over time interval (7 → 12). AGV E
is stationary during this time interval, resulting in one check performed at line 18–
19 in Fig. 5. All three other AGVs are non-stationary. Consequently, the activity
perimeter check of line 30 in Fig. 5 is performed 3 times. However, only the activity
perimeter of the drive activity of AGV B actually overlaps with the one of AGV C.
As the common time interval of both activities is (7 → 9), the check in the loop at
line 36–37 in Fig. 5 is executed 400×2 = 800 times. The total number of perimeter
checks needed is 1 + 3 + 800 = 804.

– AGV D: checking the drive activity over time interval (6 → 9). AGV C and
AGV E are stationary during this time interval, resulting in 2 checks performed at
line 18–19 in Fig. 5. The two other AGVs are non-stationary. Consequently, the
activity perimeter check of line 30 in Fig. 5 is performed 2 times. However, only
the activity perimeter of the drive activity of AGV A actually overlaps with the one
of AGV D. As the common time interval of both activities is (6 → 9), the check in
the loop at line 36–37 in Fig. 5 is executed 400×3 = 1200 times. The total number
of perimeter checks needed is 2 + 2 + 1200 = 1204.

– AGV E: checking the drive activity over time interval (2 → 5). AGV C and
AGV D are stationary during this time interval, resulting in 2 checks performed at
line 18–19 in Fig. 5. The two other AGVs are non-stationary. Consequently, the
activity perimeter check of line 30 in Fig. 5 is performed 2 times. However, none
of the activity perimeters of the activities of AGV A and AGV B overlap with the
one of AGV E. Consequently, the loop at line 34–37 in Fig. 5 is not executed. The
total number of perimeter checks needed is 2 + 2 = 4.

This means a total of 4020 perimeter checks are needed for the scenario, which is
only about 10% of the checks needed in the previous approach.

Testing AGVs in Dynamic Warehouse Environments 289

The number of checks needed by the collision detection law is highly dependent
upon the density of AGVs in the warehouse environment. The layout fragment used
in Fig. 4 is kept small for demonstration purposes, and hence the density of AGVs is
high. The complete layout of a warehouse is much more expanded, and has a lower
density of AGVs. For example, for 5 AGVs the number of stations and road segments
in an industrial layout typically ranges from 50 to 500, instead of the 10 or 12 in our
example. In a layout with a lower density of AGVs, it will be likely that the collision
detection law needs to take into account non-stationary entities less often, reducing the
number of perimeter checks. For the approach of detecting collisions based on a global
time-step, the number of perimeter checks always remains the same, irrespective of the
density of AGVs.

6 Conclusion

In this paper, we described a simulated warehouse environment that can be used to
test AGV control software. To support testing, the simulated warehouse environment is
decomposed in three parts, each with their own responsibility:

– The state is responsible to represent snapshots of the warehouse environment at a
particular moment in time.

– The model of dynamism represents in an explicit manner the evolution of the sim-
ulated warehouse environment over time.

– Detection laws are responsible to detect for the occurrence of conflicts.

We illustrated the use of the simulated warehouse environment to test collision
avoidance. The approach employed a collision detection law that relies on inspection of
drive activities to detect whether the minimal safety distance is maintained at all times.

We refer to [15] for further information on the AGV-simulator that was developed
and supports the approach described in this paper.

References

1. Egemin International NV: (http://www.egemin.com/) Home page of Egemin International
NV. Date of publication: 2002. Date retrieved: December 1, 2005. Date last modified: 2005.

2. Weyns, D., Schelfthout, K., Holvoet, T., Lefever, T., Wielemans, J.: Architecture-centric
development of an AGV transportation system. In: Multi-Agent Systems and Applications
IV. Volume 3690 of Lecture Notes in Computer Science., Springer Verlag Berlin Heidelberg
New York (2005) 640–645

3. Weyns, D., Schelfthout, K., Holvoet, T., Lefever, T.: Decentralized control of E’GV trans-
portation systems. In: Autonomous Agents and Multiagent Systems, Industry Track, Univer-
sity of Utrecht, ACM (2005) 67–74

4. Weyns, D., Holvoet, T.: A formal model for situated multi-agent systems. Fundamenta
Informaticae 63 (2004) 125–158

5. Wegner, P.: Why Interaction is More Powerful than Algorithms. Communications of the
ACM 40 (1997) 80–91

6. De Wolf, T., Samaey, G., Holvoet, T.: Engineering self-organising emergent systems with
simulation-based scientific analysis. In: Proceedings of the Fourth International Workshop
on Engineering Self-Organising Applications, Universiteit Utrecht (2005) 146–160

290 A. Helleboogh, T. Holvoet, and Y. Berbers

7. Uhrmacher, A.: Simulation for agent-oriented software engineering. In Lunceford, W., Page,
E., eds.: First International Conference on Grand Challenges for Modeling and Simulation,
SCS, San Diego (2002)

8. Uhrmacher, A.M., Kullick, B.G.: ”Plug and test”: software agents in virtual environments.
In: WSC ’00: Proceedings of the 32nd conference on Winter simulation, San Diego, CA,
USA, Society for Computer Simulation International (2000) 1722–1729

9. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, Engle-
wood Cliffs, NJ (1995)

10. Klügl, F., Fehler, M., Herrler, R.: About the role of the environment in multi-agent simula-
tions. In: Environments for multi-agent systems. Volume 3374 of Lecture Notes in Computer
Science., Springer-Verlag (2005) 127–149

11. Helleboogh, A., Holvoet, T., Weyns, D., Berbers, Y.: Extending time management support for
multi-agent systems. In: Multi-Agent and Multi-Agent-Based Simulation: Joint Workshop
MABS 2004, New York, NY, USA, July 19, 2004, Revised Selected Papers. Volume 3415 /
2005 of Lecture Notes in Computer Science., Springer-Verlag, GmbH (2005) 37–48

12. Carson, J.S.: Introduction to simulation: introduction to modeling and simulation. In: Winter
Simulation Conference. (2003) 7–13

13. Bandini, S., Manzoni, S., Simone, C.: Dealing with space in multi–agent systems: a model
for situated mas. In: AAMAS ’02: Proceedings of the first international joint conference
on Autonomous agents and multiagent systems, New York, NY, USA, ACM Press (2002)
1183–1190

14. Helleboogh, A., Holvoet, T., Berbers, Y.: Simulating actions in dynamic environments. In
Barros, F., Bruzzone, A., Frydman, C., Giambiasi, N., eds.: Conceptual Modeling and Sim-
ulation Conference, LSIS, Université Paul Cézanne Aix Marseille III (2005) 123–129

15. AgentWise Taskforce, KULeuven: (http://www.cs.kuleuven.ac.be/∼distrinet/taskforces/
agentwise/agvsimulator/) Home page of the AGV Simulator. Date of publication: 2005. Date
retrieved: December 1, 2005. Date last modified: 2005.

Author Index

Bandini, Stefania 235
Berbers, Yolande 270

Cardoso, Henrique Lopes 105

Gechter, Franck 32
Giese, Holger 139
Goldin, Dina 68

Helleboogh, Alexander 270
Hilaire, Vincent 18
Holvoet, Tom 1, 205, 218, 270
Honiden, Shinichi 121

Keil, David 68
Klein, Florian 139
Koukam, Abder 18

Leask, Gary 50

Malucelli, Andreia 105
Mamei, Marco 187
Manzoni, Sara 235

Messie, Derek 251
Mili, Rym Z. 50

Oh, Jae C. 251
Oliveira, Eugénio 105
Ossowski, Sascha 88

Parunak, H. Van Dyke 163
Platon, Eric 121

Rodriguez, Sebastian 18

Sabouret, Nicolas 121
Schelfthout, Kurt 218
Schumacher, Michael 88
Simonin, Olivier 32
Steiner, Renee 50

Valckenaers, Paul 205
Vizzari, Giuseppe 1, 235

Weyns, Danny 1, 218

Zambonelli, Franco 187

	Frontmatter
	Models, Architecture, and Design
	Environments for Situated Multi-agent Systems: Beyond Infrastructure
	Holonic Modeling of Environments for Situated Multi-agent Systems
	An Environment-Based Methodology to Design Reactive Multi-agent Systems for Problem Solving
	An Architecture for MAS Simulation Environments

	Mediated Coordination
	Indirect Interaction in Environments for Multi-agent Systems
	The Governing Environment
	Enriching a MAS Environment with Institutional Services
	Overhearing and Direct Interactions: Point of View of an Active Environment
	Grounding Social Interactions in the Environment
	A Survey of Environments and Mechanisms for Human-Human Stigmergy
	Augmenting the Physical Environment Through Embedded Wireless Technologies
	The Environment: An Essential Abstraction for Managing Complexity in MAS-Based Manufacturing Control

	Applications
	Exploiting a Virtual Environment in a Real-World Application
	Web Sites as Agents' Environments: General Framework and Applications
	Environment Organization of Roles Using Polymorphism
	Testing AGVs in Dynamic Warehouse Environments

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

